Frames and Riesz bases for shift invariant spaces on the abstract Heisenberg group

被引:9
|
作者
Arati, S. [1 ]
Radha, R. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Madras 600036, Tamil Nadu, India
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2019年 / 30卷 / 01期
关键词
Frames; Heisenberg group; Locally compact abelian group; Riesz basis; Shift invariant spaces; Twisted translates;
D O I
10.1016/j.indag.2018.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a second countable locally compact abelian group. The aim of this paper is to characterize the left translates on the Heisenberg group H(G) to be frames and Riesz bases in terms of the group Fourier transform. (C) 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 127
页数:22
相关论文
共 50 条
  • [1] p-Riesz bases in quasi shift invariant spaces
    De Carli, Laura
    Vellucci, Pierluigi
    [J]. FRAMES AND HARMONIC ANALYSIS, 2018, 706 : 201 - 213
  • [2] Frames and Riesz bases of twisted shift-invariant spaces in L2(R2n)
    Radha, R.
    Adhikari, Saswata
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1442 - 1461
  • [3] Bandpass pseudo prolate shift frames and Riesz bases
    Hogan, Jeffrey A.
    Lakey, Joseph D.
    [J]. 2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 369 - 372
  • [4] Dual Wavelet Frames and Riesz Bases in Sobolev Spaces
    Bin Han
    Zuowei Shen
    [J]. Constructive Approximation, 2009, 29 : 369 - 406
  • [5] On Uncountable Frames and Riesz Bases in Nonseparable Banach Spaces
    Ismailov, Migdad I.
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2022, 19 (02): : 149 - 170
  • [6] Dual Wavelet Frames and Riesz Bases in Sobolev Spaces
    Han, Bin
    Shen, Zuowei
    [J]. CONSTRUCTIVE APPROXIMATION, 2009, 29 (03) : 369 - 406
  • [7] The matrix-valued Riesz lemma and local orthonormal bases in shift-invariant spaces
    Hardin, DP
    Hogan, TA
    Sun, QY
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 20 (04) : 367 - 384
  • [8] The Matrix-Valued Riesz Lemma and Local Orthonormal Bases in Shift-Invariant Spaces
    Douglas P. Hardin
    Thomas A. Hogan
    Qiyu Sun
    [J]. Advances in Computational Mathematics, 2004, 20 : 367 - 384
  • [9] Frames of periodic shift-invariant spaces
    Chen, DR
    [J]. JOURNAL OF APPROXIMATION THEORY, 2000, 107 (02) : 204 - 211
  • [10] Frames by Iterations in Shift-invariant Spaces
    Aguilera, Alejandra
    Cabrelli, Carlos
    Carbajal, Diana
    Paternostro, Victoria
    [J]. 2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,