Bandpass pseudo prolate shift frames and Riesz bases

被引:0
|
作者
Hogan, Jeffrey A. [1 ]
Lakey, Joseph D. [2 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
[2] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
基金
澳大利亚研究理事会;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate frames and Riesz bases for the space of square-integrable functions on the line whose Fourier transforms are supported on the union of two disjoint intervals (bandpass signals). By suitably modulating a frame (resp. Riesz basis) for the Paley-Wiener space PW Omega which is generated by the shifts of prolate spheroidal wave functions, we generate frames (reps. Riesz bases) for the bandpass space, and show that the frame (resp. Riesz) bounds are the same as those of the baseband frame (resp. Riesz basis).
引用
收藏
页码:369 / 372
页数:4
相关论文
共 50 条
  • [1] Frames and Riesz bases for shift invariant spaces on the abstract Heisenberg group
    Arati, S.
    Radha, R.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (01): : 106 - 127
  • [2] Prolate shift frames and their duals
    Hogan, Jeffrey A.
    Lakey, Joseph D.
    [J]. 2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 115 - 119
  • [3] ON THE STABILITY OF FRAMES AND RIESZ BASES
    FAVIER, SJ
    ZALIK, RA
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (02) : 160 - 173
  • [4] Wavelet Frames Generated by Bandpass Prolate Functions
    Hogan, Jeffrey A.
    Lakey, Joseph D.
    [J]. 2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 120 - 123
  • [5] Frames and Riesz bases: a short survey
    Favier, SJ
    Zalik, RA
    [J]. WAVELET THEORY AND HARMONIC ANALYSIS IN APPLIED SCIENCES, 1997, : 93 - 117
  • [6] Perturbation Theorems for Frames and Riesz Bases
    Xiao, Xuemei
    [J]. ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING II, PTS 1-3, 2013, 433-435 : 44 - 47
  • [7] On the stability of wavelet and Gabor frames (Riesz bases)
    Jing, Z
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (01) : 105 - 125
  • [8] On Weaving Generalized Frames and Generalized Riesz Bases
    Aniruddha Deepshikha
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 361 - 378
  • [9] On Weaving Generalized Frames and Generalized Riesz Bases
    Deepshikha
    Samanta, Aniruddha
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (01) : 361 - 378
  • [10] On the stability of wavelet and Gabor frames (Riesz bases)
    Zhang Jing
    [J]. Journal of Fourier Analysis and Applications, 1999, 5 : 105 - 125