Stability of bases and frames of reproducing kernels in model spaces

被引:10
|
作者
Baranov, A
机构
[1] St Petersburg State Univ, Dept Mat & Mech, St Petersburg 198504, Russia
[2] Univ Bordeaux 1, Lab Anal & Geometrie, F-33405 Talence, France
关键词
inner function; shift-coinvariant subspace; reproducing kernel; Riesz basis; frame; stability;
D O I
10.5802/aif.2165
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the bases and frames of reproducing kernels in the model subspaces K-circle minus(2) = H-2 circle minus circle minus H-2 of the Hardy class H2 in the upper half-plane. The main problem under consideration is the stability of a basis of reproducing kernels k(lambda n) (z) = (1 - <(circle minus(lambda(n)))over bar >circle minus(z))/(z-(lambda) over bar (n)) under "small" perturbations of the points lambda(n). We propose an approach to this problem based on the recently obtained estimates of derivatives in the spaces K-circle minus(2) and produce estimates of admissible perturbations generalizing certain results of W.S. Cohn and E. Fricain.
引用
收藏
页码:2399 / +
页数:25
相关论文
共 50 条