AN EXAMPLE OF ONLY LINEAR CONVERGENCE OF TRUST REGION ALGORITHMS FOR NON-SMOOTH OPTIMIZATION

被引:23
|
作者
YUAN, Y [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE CB3 9EW,ENGLAND
关键词
D O I
10.1093/imanum/4.3.327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Most superlinear convergence results about trust region algorithms for non-smooth optimization are dependent on the inactivity of trust region restrictions. An example is constructed to show that it is possible that at every iteration the trust region bound is active and the rate of convergence is only linear, though strict complementarity and second order sufficiency conditions are satisfied. © 1984 by Academic Press Inc. (London) Limited.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 50 条
  • [21] The Optimal Convergence Rate of Adam-Type Algorithms for Non-Smooth Strongly Convex Cases
    Long S.
    Tao W.
    Zhang Z.-D.
    Tao Q.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2049 - 2059
  • [22] Constrained non-smooth optimization in dead-beat control of linear servosystems
    Mosna, J
    Melichar, J
    Pesek, P
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2005, 26 (01): : 19 - 34
  • [23] Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity
    Zhang, Jin
    Zhu, Xide
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 192 (02) : 564 - 597
  • [24] Accelerated convergence for Schrodinger equations with non-smooth potentials
    Kieri, Emil
    BIT NUMERICAL MATHEMATICS, 2014, 54 (03) : 729 - 748
  • [25] On the rate of convergence of alternating minimization for non-smooth non-strongly convex optimization in Banach spaces
    Both, Jakub Wiktor
    OPTIMIZATION LETTERS, 2022, 16 (02) : 729 - 743
  • [26] Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity
    Jin Zhang
    Xide Zhu
    Journal of Optimization Theory and Applications, 2022, 192 : 564 - 597
  • [27] On the rate of convergence of alternating minimization for non-smooth non-strongly convex optimization in Banach spaces
    Jakub Wiktor Both
    Optimization Letters, 2022, 16 : 729 - 743
  • [28] Computational Experience and Challenges with the Conjugate Epi-Projection Algorithms for Non-smooth Optimization
    Nurminski, Evgeni A.
    Shamray, Natalia B.
    OPTIMIZATION AND APPLICATIONS, OPTIMA 2019, 2020, 1145 : 443 - 454
  • [29] Decentralized Dual Proximal Gradient Algorithms for Non-Smooth Constrained Composite Optimization Problems
    Li, Huaqing
    Hu, Jinhui
    Ran, Liang
    Wang, Zheng
    Lu, Qingguo
    Du, Zhenyuan
    Huang, Tingwen
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (10) : 2594 - 2605
  • [30] Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence
    Xu, Yi
    Qi, Qi
    Lin, Qihang
    Jin, Rong
    Yang, Tianbao
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97