AN EXAMPLE OF ONLY LINEAR CONVERGENCE OF TRUST REGION ALGORITHMS FOR NON-SMOOTH OPTIMIZATION

被引:23
|
作者
YUAN, Y [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE CB3 9EW,ENGLAND
关键词
D O I
10.1093/imanum/4.3.327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Most superlinear convergence results about trust region algorithms for non-smooth optimization are dependent on the inactivity of trust region restrictions. An example is constructed to show that it is possible that at every iteration the trust region bound is active and the rate of convergence is only linear, though strict complementarity and second order sufficiency conditions are satisfied. © 1984 by Academic Press Inc. (London) Limited.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 50 条
  • [31] Inertial self-adaptive algorithms for solving non-smooth convex optimization problems
    Chen, Xin
    Duan, Peichao
    NUMERICAL ALGORITHMS, 2025, 98 (01) : 133 - 163
  • [32] Non-smooth techniques for stabilizing linear systems
    Bompart, Vincent
    Apkarian, Pierre
    Noll, Dominikus
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 1630 - 1635
  • [33] On the asymptotic stability of proximal algorithms for convex optimization problems with multiple non-smooth regularizers
    Ozaslan, Ibrahim K.
    Hassan-Moghaddam, Sepideh
    Jovanovic, Mihailo R.
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 132 - 137
  • [34] On the convergence theory of trust-region-based algorithms for equality-constrained optimization
    Dennis, JE
    Vicente, LN
    SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (04) : 927 - 950
  • [35] CONVERGENCE OF TRUST REGION ALGORITHMS FOR OPTIMIZATION WITH BOUNDS WHEN STRICT COMPLEMENTARITY DOES NOT HOLD
    LESCRENIER, M
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) : 476 - 495
  • [36] Minimax Problem of Simultaneous Optimization of Smooth and Non-Smooth Functionals
    Mizintseva, Maria
    Ovsyannikov, Dmitri
    2017 CONSTRUCTIVE NONSMOOTH ANALYSIS AND RELATED TOPICS (DEDICATED TO THE MEMORY OF V.F. DEMYANOV) (CNSA), 2017, : 218 - 221
  • [37] DIFFUSION STOCHASTIC OPTIMIZATION WITH NON-SMOOTH REGULARIZERS
    Vlaski, Stefan
    Vandenberghe, Lieven
    Sayed, Ali H.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4149 - 4153
  • [38] Adaptive Sampling Probabilities for Non-Smooth Optimization
    Namkoong, Hongseok
    Sinha, Aman
    Yadlowsky, Steve
    Duchi, John C.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [39] A Smooth Method for Solving Non-Smooth Unconstrained Optimization Problems
    Rahmanpour, F.
    Hosseini, M. M.
    JOURNAL OF MATHEMATICAL EXTENSION, 2016, 10 (03) : 11 - 33
  • [40] Discontinuity detection algorithms for non-smooth differential equations
    See, SCW
    ESS'98 - SIMULATION TECHNOLOGY: SCIENCE AND ART, 1998, : 76 - 80