Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity

被引:1
|
作者
Zhang, Jin [1 ]
Zhu, Xide [2 ]
机构
[1] Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Dept Math, Shenzhen, Peoples R China
[2] Shanghai Univ, Sch Management, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear convergence; Bounded metric subregularity; Calmness; Proximal stochastic variance-reduced gradient; Randomized block-coordinate proximal gradient; COORDINATE DESCENT METHODS; REGRESSION; REGULARITY; SELECTION; PARALLEL;
D O I
10.1007/s10957-021-01978-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
With the help of bounded metric subregularity which is weaker than strong convexity, we show the linear convergence of proximal stochastic variance-reduced gradient (Prox-SVRG) method for solving a class of separable non-smooth convex optimization problems where the smooth item is a composite of strongly convex function and linear function. We introduce an equivalent characterization for the bounded metric subregularity by taking into account the calmness condition of a perturbed linear system. This equivalent characterization allows us to provide a verifiable sufficient condition to ensure linear convergence of Prox-SVRG and randomized block-coordinate proximal gradient methods. Furthermore, we verify that these sufficient conditions hold automatically when the non-smooth item is the generalized sparse group Lasso regularizer.
引用
收藏
页码:564 / 597
页数:34
相关论文
共 50 条
  • [1] Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity
    Jin Zhang
    Xide Zhu
    Journal of Optimization Theory and Applications, 2022, 192 : 564 - 597
  • [2] On the Linear Convergence of the Approximate Proximal Splitting Method for Non-smooth Convex Optimization
    Kadkhodaie M.
    Sanjabi M.
    Luo Z.-Q.
    Journal of the Operations Research Society of China, 2014, 2 (2) : 123 - 141
  • [3] Convergence guarantees for a class of non-convex and non-smooth optimization problems
    Khamaru, Koulik
    Wainwright, Martin J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [4] Convergence guarantees for a class of non-convex and non-smooth optimization problems
    Khamaru, Koulik
    Wainwright, Martin J.
    Journal of Machine Learning Research, 2019, 20
  • [5] Convergence guarantees for a class of non-convex and non-smooth optimization problems
    Khamaru, Koulik
    Wainwright, Martin J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [6] Linear Convergence of ADMM Under Metric Subregularity for Distributed Optimization
    Pan, Xiaowei
    Liu, Zhongxin
    Chen, Zengqiang
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (04) : 2513 - 2520
  • [7] An efficient primal dual prox method for non-smooth optimization
    Tianbao Yang
    Mehrdad Mahdavi
    Rong Jin
    Shenghuo Zhu
    Machine Learning, 2015, 98 : 369 - 406
  • [8] An efficient primal dual prox method for non-smooth optimization
    Yang, Tianbao
    Mahdavi, Mehrdad
    Jin, Rong
    Zhu, Shenghuo
    MACHINE LEARNING, 2015, 98 (03) : 369 - 406
  • [9] A memory gradient method for non-smooth convex optimization
    Ou, Yigui
    Liu, Yuanwen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (08) : 1625 - 1642
  • [10] A Smooth Method for Solving Non-Smooth Unconstrained Optimization Problems
    Rahmanpour, F.
    Hosseini, M. M.
    JOURNAL OF MATHEMATICAL EXTENSION, 2016, 10 (03) : 11 - 33