Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity

被引:1
|
作者
Zhang, Jin [1 ]
Zhu, Xide [2 ]
机构
[1] Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Dept Math, Shenzhen, Peoples R China
[2] Shanghai Univ, Sch Management, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear convergence; Bounded metric subregularity; Calmness; Proximal stochastic variance-reduced gradient; Randomized block-coordinate proximal gradient; COORDINATE DESCENT METHODS; REGRESSION; REGULARITY; SELECTION; PARALLEL;
D O I
10.1007/s10957-021-01978-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
With the help of bounded metric subregularity which is weaker than strong convexity, we show the linear convergence of proximal stochastic variance-reduced gradient (Prox-SVRG) method for solving a class of separable non-smooth convex optimization problems where the smooth item is a composite of strongly convex function and linear function. We introduce an equivalent characterization for the bounded metric subregularity by taking into account the calmness condition of a perturbed linear system. This equivalent characterization allows us to provide a verifiable sufficient condition to ensure linear convergence of Prox-SVRG and randomized block-coordinate proximal gradient methods. Furthermore, we verify that these sufficient conditions hold automatically when the non-smooth item is the generalized sparse group Lasso regularizer.
引用
收藏
页码:564 / 597
页数:34
相关论文
共 50 条
  • [31] Reduced subgradient bundle method for linearly constrained non-smooth non-convex problems
    El Ghali, A.
    El Moudden, M.
    OPTIMIZATION, 2021, 70 (10) : 2103 - 2130
  • [32] A proximal gradient method for control problems with non-smooth and non-convex control cost
    Carolin Natemeyer
    Daniel Wachsmuth
    Computational Optimization and Applications, 2021, 80 : 639 - 677
  • [33] Almost sure convergence of stochastic composite objective mirror descent for non-convex non-smooth optimization
    Liang, Yuqing
    Xu, Dongpo
    Zhang, Naimin
    Mandic, Danilo P.
    OPTIMIZATION LETTERS, 2024, 18 (09) : 2113 - 2131
  • [34] A POLYNOMIAL-TIME DESCENT METHOD FOR SEPARABLE CONVEX OPTIMIZATION PROBLEMS WITH LINEAR CONSTRAINTS
    Chubanov, Sergei
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 856 - 889
  • [35] Conditions for linear convergence of the gradient method for non-convex optimization
    Abbaszadehpeivasti, Hadi
    de Klerk, Etienne
    Zamani, Moslem
    OPTIMIZATION LETTERS, 2023, 17 (05) : 1105 - 1125
  • [36] Conditions for linear convergence of the gradient method for non-convex optimization
    Hadi Abbaszadehpeivasti
    Etienne de Klerk
    Moslem Zamani
    Optimization Letters, 2023, 17 : 1105 - 1125
  • [37] Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems
    Yang, Lei
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 200 (01) : 68 - 103
  • [38] Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems
    Lei Yang
    Journal of Optimization Theory and Applications, 2024, 200 : 68 - 103
  • [39] Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems
    Zehui Jia
    Xue Gao
    Xingju Cai
    Deren Han
    Journal of Optimization Theory and Applications, 2021, 188 : 1 - 25
  • [40] ON THE LINEAR CONVERGENCE OF THE PROXIMAL SUBGRADIENT SPLITTING METHOD FOR WEAKLY CONVEX OPTIMIZATION PROBLEMS
    Guo, Ke
    Xiao, Yi-Bin
    Yao, Jen-Chih
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (04) : 821 - 833