GEGENBAUER POLYNOMIALS REVISITED

被引:0
|
作者
HORADAM, AF [1 ]
机构
[1] UNIV NEW ENGLAND,ARMIDALE,NSW 2351,AUSTRALIA
来源
FIBONACCI QUARTERLY | 1985年 / 23卷 / 04期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:294 / &
相关论文
共 50 条
  • [21] The expansion in Gegenbauer polynomials: A simple method for the fast computation of the Gegenbauer coefficients
    De Micheli, Enrico
    Viano, Giovanni Alberto
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 239 : 112 - 122
  • [22] Higher Spin Generalisation of the Gegenbauer Polynomials
    David Eelbode
    Tim Janssens
    Complex Analysis and Operator Theory, 2017, 11 : 1173 - 1192
  • [23] Expansion in terms of Gegenbauer polynomials for solutions of a perturbed Gegenbauer differential equation
    El Kamel, J
    Fitouhi, A
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1997, 5 (3-4) : 213 - 226
  • [24] Some identities involving Gegenbauer polynomials
    Dae San Kim
    Taekyun Kim
    Seog-Hoon Rim
    Advances in Difference Equations, 2012
  • [25] The affine group and generalized Gegenbauer polynomials
    Feinsilver, P
    Franz, U
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (09) : 1173 - 1182
  • [26] GEGENBAUER POLYNOMIALS OF TWO VARIABLES AND THEIR PROPERTIES
    Nadeem, Raghib
    Khan, Abdul Hakim
    Nisar, Kottakkaran Sooppy
    Abouzaid, Moheb Saad
    Abusufian, Abdallah Hassan
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2020, 19 (04): : 269 - 290
  • [27] Higher Spin Generalisation of the Gegenbauer Polynomials
    Eelbode, David
    Janssens, Tim
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (05) : 1173 - 1192
  • [28] New generating functions for Gegenbauer polynomials
    Exton, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 67 (01) : 191 - 193
  • [29] Some identities involving Gegenbauer polynomials
    Kim, Dae San
    Kim, Taekyun
    Rim, Seog-Hoon
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [30] On a generalization of the generating function for Gegenbauer polynomials
    Cohl, Howard S.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (10) : 807 - 816