GEGENBAUER POLYNOMIALS OF TWO VARIABLES AND THEIR PROPERTIES

被引:0
|
作者
Nadeem, Raghib [1 ]
Khan, Abdul Hakim [1 ]
Nisar, Kottakkaran Sooppy [2 ]
Abouzaid, Moheb Saad [2 ,3 ]
Abusufian, Abdallah Hassan [2 ]
机构
[1] Aligarh Muslim Univ, Zakir Hussain Coll Engn & Technol, Dept Appl Math, Aligarh, Uttar Pradesh, India
[2] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci Wadi Aldawaser, Dept Math, Alkharj 11991, Saudi Arabia
[3] Kafrelshiekh Univ, Fac Sci, Dept Math, Kafr Al Sheikh, Egypt
来源
关键词
Gegenbauer polynomials of two variables; generating functions; Rodrigues formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The principal aim of this paper is to introduce Gegenbauer polynomials of two variables and investigate their properties. The explicit representation, generating functions, hypergeometric representations, Rodrigues formula and orthogonality of these polynomials are obtained. Further, the recurrence relations and relationship of these polynomials with some other polynomials are also derived. The surface plot of these polynomials is represented with the help of Matlab.
引用
收藏
页码:269 / 290
页数:22
相关论文
共 50 条
  • [1] Some Properties of Generalized Gegenbauer Matrix Polynomials
    Yasmin, Ghazala
    INTERNATIONAL JOURNAL OF ANALYSIS, 2014,
  • [2] SOME MISCELLANEOUS PROPERTIES FOR GEGENBAUER MATRIX POLYNOMIALS
    Altin, Abdullah
    Cekim, Bayram
    UTILITAS MATHEMATICA, 2013, 92 : 377 - 387
  • [3] POLYNOMIALS ASSOCIATED WITH GEGENBAUER POLYNOMIALS
    HORADAM, AF
    PETHE, S
    FIBONACCI QUARTERLY, 1981, 19 (05): : 393 - 398
  • [4] Generalization of two-variable Chebyshev and Gegenbauer polynomials
    Cesarano, Clemente
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (01): : 1 - 7
  • [5] Certain properties of Gegenbauer polynomials via Lie algebra
    Prajapati, Jyotindra C.
    Choi, Junesang
    Kachhia, Krunal B.
    Agarwal, Praveen
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (04) : 1031 - 1037
  • [6] The approximation properties of generalized Bernstein polynomials of two variables
    Büyükyazici, I
    Ibikli, E
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (02) : 367 - 380
  • [7] ON BOUNDS FOR GEGENBAUER POLYNOMIALS
    KHANDEKAR, PR
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (09): : 1018 - &
  • [8] Certain properties of Gegenbauer polynomials via Lie algebra
    Jyotindra C. Prajapati
    Junesang Choi
    Krunal B. Kachhia
    Praveen Agarwal
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 1031 - 1037
  • [9] GEGENBAUER POLYNOMIALS REVISITED
    HORADAM, AF
    FIBONACCI QUARTERLY, 1985, 23 (04): : 294 - &
  • [10] Appendix: Gegenbauer Polynomials
    Kobayashi, Toshiyuki
    Kubo, Toshihisa
    Pevzner, Michael
    CONFORMAL SYMMETRY BREAKING OPERATORS FOR DIFFERENTIAL FORMS ON SPHERES, 2016, 2170 : 173 - 184