Higher Spin Generalisation of the Gegenbauer Polynomials

被引:2
|
作者
Eelbode, David [1 ]
Janssens, Tim [1 ]
机构
[1] Univ Antwerp, Dept Math, Middelheimlaan 1, B-2020 Antwerp, Belgium
关键词
Hypergeometric Function; Hypergeometric Series; Verma Module; Monogenic Function; Invariant Polynomial;
D O I
10.1007/s11785-016-0623-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we generalise the harmonic Gegenbauer polynomials to the higher spin setting. To do so we will consider the space of simplicial harmonics and look for polynomials that are invariant with respect to a particular subalgebra of the orthogonal Lie algebra. Analogue to the classic case we will construct a ladder operator which generates our special functions and use them to construct Appell sequences.
引用
收藏
页码:1173 / 1192
页数:20
相关论文
共 50 条
  • [1] Higher Spin Generalisation of the Gegenbauer Polynomials
    David Eelbode
    Tim Janssens
    Complex Analysis and Operator Theory, 2017, 11 : 1173 - 1192
  • [2] POLYNOMIALS ASSOCIATED WITH GEGENBAUER POLYNOMIALS
    HORADAM, AF
    PETHE, S
    FIBONACCI QUARTERLY, 1981, 19 (05): : 393 - 398
  • [3] Higher spin generalisation of Fueter's theorem
    Eelbode, David
    Janssens, Tim
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (13) : 4887 - 4905
  • [4] ON BOUNDS FOR GEGENBAUER POLYNOMIALS
    KHANDEKAR, PR
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (09): : 1018 - &
  • [5] GEGENBAUER POLYNOMIALS REVISITED
    HORADAM, AF
    FIBONACCI QUARTERLY, 1985, 23 (04): : 294 - &
  • [6] Appendix: Gegenbauer Polynomials
    Kobayashi, Toshiyuki
    Kubo, Toshihisa
    Pevzner, Michael
    CONFORMAL SYMMETRY BREAKING OPERATORS FOR DIFFERENTIAL FORMS ON SPHERES, 2016, 2170 : 173 - 184
  • [7] Gegenbauer Type Polynomial Solutions for the Higher Spin Laplace Operator
    Eelbode, David
    Janssens, Tim
    MODERN TRENDS IN HYPERCOMPLEX ANALYSIS, 2016, : 161 - 174
  • [8] Gegenbauer polynomials and semiseparable matrices
    Keiner, Jens
    Electronic Transactions on Numerical Analysis, 2008, 30 : 26 - 53
  • [9] Derivatives of generalized Gegenbauer polynomials
    García Fuertes W.
    Perelomov A.M.
    Theoretical and Mathematical Physics, 2002, 131 (2) : 609 - 611
  • [10] Derivatives of generalized Gegenbauer polynomials
    Fuertes, WG
    Perelomov, AM
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 131 (02) : 609 - 611