Higher Spin Generalisation of the Gegenbauer Polynomials

被引:2
|
作者
Eelbode, David [1 ]
Janssens, Tim [1 ]
机构
[1] Univ Antwerp, Dept Math, Middelheimlaan 1, B-2020 Antwerp, Belgium
关键词
Hypergeometric Function; Hypergeometric Series; Verma Module; Monogenic Function; Invariant Polynomial;
D O I
10.1007/s11785-016-0623-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we generalise the harmonic Gegenbauer polynomials to the higher spin setting. To do so we will consider the space of simplicial harmonics and look for polynomials that are invariant with respect to a particular subalgebra of the orthogonal Lie algebra. Analogue to the classic case we will construct a ladder operator which generates our special functions and use them to construct Appell sequences.
引用
收藏
页码:1173 / 1192
页数:20
相关论文
共 50 条
  • [31] Some identities involving Gegenbauer polynomials
    Kim, Dae San
    Kim, Taekyun
    Rim, Seog-Hoon
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [32] On a generalization of the generating function for Gegenbauer polynomials
    Cohl, Howard S.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (10) : 807 - 816
  • [33] The Gegenbauer polynomials and typically real functions
    Kiepiela, K
    Naraniecka, I
    Szynal, J
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 153 (1-2) : 273 - 282
  • [34] On the Behavior of Gegenbauer Polynomials in the Complex Plane
    Nikolov, Geno
    Alexandrov, Alexander
    RESULTS IN MATHEMATICS, 2012, 62 (3-4) : 415 - 428
  • [35] On the asymptotic expansion of the entropy of Gegenbauer polynomials
    Lara, JFS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (02) : 401 - 409
  • [36] A New Generalisation of Macdonald Polynomials
    Garbali, Alexandr
    de Gier, Jan
    Wheeler, Michael
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 352 (02) : 773 - 804
  • [37] A GENERALIZATION OF FIBONACCI POLYNOMIALS AND A REPRESENTATION OF GEGENBAUER POLYNOMIALS OF INTEGER ORDER
    DILCHER, K
    FIBONACCI QUARTERLY, 1987, 25 (04): : 300 - 303
  • [38] Arboretum for a generalisation of Ramanujan polynomials
    Lucas Randazzo
    The Ramanujan Journal, 2021, 54 : 591 - 604
  • [39] An application of gegenbauer polynomials to machine vision
    Zhang, Xiaoliang
    Adjei, Osei
    Li, Dayou
    Radoiu, Dumitru
    Enachescu, Calin
    EDUCATION TRAINING AND INFORMATION COMMUNICATION TECHNOLOGIES ROEDUNET' 05: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ROEDUNET ROMANIA, 2005, : 162 - 173
  • [40] On the Behavior of Gegenbauer Polynomials in the Complex Plane
    Geno Nikolov
    Alexander Alexandrov
    Results in Mathematics, 2012, 62 : 415 - 428