Higher Spin Generalisation of the Gegenbauer Polynomials

被引:2
|
作者
Eelbode, David [1 ]
Janssens, Tim [1 ]
机构
[1] Univ Antwerp, Dept Math, Middelheimlaan 1, B-2020 Antwerp, Belgium
关键词
Hypergeometric Function; Hypergeometric Series; Verma Module; Monogenic Function; Invariant Polynomial;
D O I
10.1007/s11785-016-0623-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we generalise the harmonic Gegenbauer polynomials to the higher spin setting. To do so we will consider the space of simplicial harmonics and look for polynomials that are invariant with respect to a particular subalgebra of the orthogonal Lie algebra. Analogue to the classic case we will construct a ladder operator which generates our special functions and use them to construct Appell sequences.
引用
收藏
页码:1173 / 1192
页数:20
相关论文
共 50 条
  • [21] GEGENBAUER POLYNOMIALS AND SEMISEPARABLE MATRICES
    Keiner, Jens
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 30 : 26 - 53
  • [22] Information entropy of Gegenbauer polynomials
    Buyarov, VS
    López-Artés, P
    Martínez-Finkelshtein, A
    Van Assche, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (37): : 6549 - 6560
  • [23] A generalization of the symmetric classical polynomials: Hermite and Gegenbauer polynomials
    Ben Romdhane, Neila
    Gaied, Mohamed
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (03) : 227 - 244
  • [24] Gegenbauer polynomials and supersymmetric quantum mechanics
    Rosu, H
    Guzman, JR
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1997, 112 (06): : 941 - 942
  • [25] The expansion in Gegenbauer polynomials: A simple method for the fast computation of the Gegenbauer coefficients
    De Micheli, Enrico
    Viano, Giovanni Alberto
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 239 : 112 - 122
  • [26] Expansion in terms of Gegenbauer polynomials for solutions of a perturbed Gegenbauer differential equation
    El Kamel, J
    Fitouhi, A
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1997, 5 (3-4) : 213 - 226
  • [27] Some identities involving Gegenbauer polynomials
    Dae San Kim
    Taekyun Kim
    Seog-Hoon Rim
    Advances in Difference Equations, 2012
  • [28] The affine group and generalized Gegenbauer polynomials
    Feinsilver, P
    Franz, U
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (09) : 1173 - 1182
  • [29] GEGENBAUER POLYNOMIALS OF TWO VARIABLES AND THEIR PROPERTIES
    Nadeem, Raghib
    Khan, Abdul Hakim
    Nisar, Kottakkaran Sooppy
    Abouzaid, Moheb Saad
    Abusufian, Abdallah Hassan
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2020, 19 (04): : 269 - 290
  • [30] New generating functions for Gegenbauer polynomials
    Exton, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 67 (01) : 191 - 193