INEXACT NEWTON METHODS FOR SOLVING NONSMOOTH EQUATIONS

被引:97
|
作者
MARTINEZ, JM
QI, LQ
机构
[1] UNIV CAMPINAS,IMECC,DEPT APPL MATH,BR-13081 CAMPINAS,SP,BRAZIL
[2] UNIV NEW S WALES,DEPT APPL MATH,SYDNEY,NSW 2052,AUSTRALIA
基金
巴西圣保罗研究基金会; 澳大利亚研究理事会;
关键词
NONSMOOTH ANALYSIS; INEXACT NEWTON METHODS; SUPERLINEAR CONVERGENCE; GLOBAL CONVERGENCE;
D O I
10.1016/0377-0427(94)00088-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates inexact Newton methods for solving systems of nonsmooth equations. We define two inexact Newton methods for locally Lipschitz functions and we prove local (linear and superlinear) convergence results under the assumptions of semismoothness and ED-regularity at the solution. We introduce a globally convergent inexact iteration function based method. We discuss implementations and we give some numerical examples.
引用
收藏
页码:127 / 145
页数:19
相关论文
共 50 条
  • [31] On superlinear convergence of quasi-Newton methods for nonsmooth equations
    Qi, LQ
    OPERATIONS RESEARCH LETTERS, 1997, 20 (05) : 223 - 228
  • [32] NONLINEAR KRYLOV SUBSPACE METHODS FOR SOLVING NONSMOOTH EQUATIONS
    孟泽红
    张建军
    AppliedMathematicsandMechanics(EnglishEdition), 2005, (09) : 1172 - 1180
  • [33] Nonlinear krylov subspace methods for solving nonsmooth equations
    Meng, ZH
    Zhang, JJ
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2005, 26 (09) : 1172 - 1180
  • [34] Solving the nonlinear power flow equations with an inexact Newton method using GMRES
    Flueck, AJ
    Chiang, HD
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (02) : 267 - 273
  • [35] Nonlinear Krylov subspace methods for solving nonsmooth equations
    Meng Ze-hong
    Zhang Jian-jun
    Applied Mathematics and Mechanics, 2005, 26 (9) : 1172 - 1180
  • [36] Newton's method with feasible inexact projections for solving constrained generalized equations
    de Oliveira, Fabiana R.
    Ferreira, Orizon P.
    Silva, Gilson N.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 72 (01) : 159 - 177
  • [37] Newton’s method with feasible inexact projections for solving constrained generalized equations
    Fabiana R. de Oliveira
    Orizon P. Ferreira
    Gilson N. Silva
    Computational Optimization and Applications, 2019, 72 : 159 - 177
  • [38] On the convergence of inexact newton methods
    Idema, Reijer
    Lahaye, Domenico
    Vuik, Cornelis
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 355 - 363
  • [39] Inexact Newton dogleg methods
    Pawlowski, Roger P.
    Simonis, Joseph P.
    Walker, Homer F.
    Shadid, John N.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) : 2112 - 2132
  • [40] On the convergence of inexact Newton methods
    Idema, Reijer
    Lahaye, Domenico
    Vuik, Cornelis
    Lecture Notes in Computational Science and Engineering, 2013, 103 : 355 - 363