On superlinear convergence of quasi-Newton methods for nonsmooth equations

被引:12
|
作者
Qi, LQ
机构
关键词
nonsmooth equations; quasi-Newton methods; the Broyden method; superlinear convergence;
D O I
10.1016/S0167-6377(97)00012-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show that strong differentiability at solutions is not necessary for superlinear convergence of quasi-Newton methods for solving nonsmooth equations. We improve the superlinear convergence result of Ip and Kyparisis for general quasi-Newton methods as well as the Broyden method. For a special example, the Newton method is divergent but the Broyden method is superlinearly convergent. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [1] Superlinear convergence of smoothing quasi-Newton methods for nonsmooth equations
    Chen, XJ
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 80 (01) : 105 - 126
  • [2] On the convergence of quasi-Newton methods for nonsmooth problems
    Lopes, VLR
    Martinez, JM
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1995, 16 (9-10) : 1193 - 1209
  • [3] GREEDY QUASI-NEWTON METHODS WITH EXPLICIT SUPERLINEAR CONVERGENCE
    Rodomanov, Anton
    Nesterov, Yurii
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (01) : 785 - 811
  • [4] Rates of superlinear convergence for classical quasi-Newton methods
    Anton Rodomanov
    Yurii Nesterov
    [J]. Mathematical Programming, 2022, 194 : 159 - 190
  • [5] Rates of superlinear convergence for classical quasi-Newton methods
    Rodomanov, Anton
    Nesterov, Yurii
    [J]. MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 159 - 190
  • [6] CHARACTERIZATION OF SUPERLINEAR CONVERGENCE AND ITS APPLICATION TO QUASI-NEWTON METHODS
    DENNIS, JE
    MORE, JJ
    [J]. MATHEMATICS OF COMPUTATION, 1974, 28 (126) : 549 - 560
  • [7] Incremental Quasi-Newton Methods with Faster Superlinear Convergence Rates
    Liu, Zhuanghua
    Luo, Luo
    Low, Bryan Kian Hsiang
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 14097 - 14105
  • [8] LOCAL AND SUPERLINEAR CONVERGENCE FOR PARTIALLY KNOWN QUASI-NEWTON METHODS
    Engels, John R.
    Martinez, Hector J.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (01) : 42 - 56
  • [9] New Results on Superlinear Convergence of Classical Quasi-Newton Methods
    Rodomanov, Anton
    Nesterov, Yurii
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 188 (03) : 744 - 769
  • [10] New Results on Superlinear Convergence of Classical Quasi-Newton Methods
    Anton Rodomanov
    Yurii Nesterov
    [J]. Journal of Optimization Theory and Applications, 2021, 188 : 744 - 769