INEXACT NEWTON METHODS FOR SOLVING NONSMOOTH EQUATIONS

被引:97
|
作者
MARTINEZ, JM
QI, LQ
机构
[1] UNIV CAMPINAS,IMECC,DEPT APPL MATH,BR-13081 CAMPINAS,SP,BRAZIL
[2] UNIV NEW S WALES,DEPT APPL MATH,SYDNEY,NSW 2052,AUSTRALIA
基金
巴西圣保罗研究基金会; 澳大利亚研究理事会;
关键词
NONSMOOTH ANALYSIS; INEXACT NEWTON METHODS; SUPERLINEAR CONVERGENCE; GLOBAL CONVERGENCE;
D O I
10.1016/0377-0427(94)00088-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates inexact Newton methods for solving systems of nonsmooth equations. We define two inexact Newton methods for locally Lipschitz functions and we prove local (linear and superlinear) convergence results under the assumptions of semismoothness and ED-regularity at the solution. We introduce a globally convergent inexact iteration function based method. We discuss implementations and we give some numerical examples.
引用
收藏
页码:127 / 145
页数:19
相关论文
共 50 条
  • [41] Inexact Quasi-Newton methods for sparse systems of nonlinear equations
    Bergamaschi, L
    Moret, I
    Zilli, G
    FUTURE GENERATION COMPUTER SYSTEMS, 2001, 18 (01) : 41 - 53
  • [42] Inexact Newton methods for semismooth equations with applications to variational inequality problems
    Facchinei, F
    Fischer, A
    Kanzow, C
    NONLINEAR OPTIMIZATION AND APPLICATIONS, 1996, : 125 - 139
  • [43] Inexact Newton matrix-free methods for solving complex biotechnological systems
    Drag, Pawel
    Kwiatkowska, Marlena
    FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2014, 2014, 2 : 597 - 602
  • [44] Globally Convergent Inexact Quasi-Newton Methods for Solving Nonlinear Systems
    Ernesto G. Birgin
    Nataša Krejić
    José Mario Martínez
    Numerical Algorithms, 2003, 32 : 249 - 260
  • [45] Globally convergent inexact quasi-Newton methods for solving nonlinear systems
    Birgin, EG
    Krejic, N
    Martínez, JM
    NUMERICAL ALGORITHMS, 2003, 32 (2-4) : 249 - 260
  • [46] Inexact overlapped block Broyden methods for solving nonlinear equations
    Chen, YR
    Cai, DY
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 136 (2-3) : 215 - 228
  • [47] An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization
    Ruyu Liu
    Shaohua Pan
    Yuqia Wu
    Xiaoqi Yang
    Computational Optimization and Applications, 2024, 88 : 603 - 641
  • [48] An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization
    Liu, Ruyu
    Pan, Shaohua
    Wu, Yuqia
    Yang, Xiaoqi
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 88 (02) : 603 - 641
  • [49] Superlinear convergence of smoothing quasi-Newton methods for nonsmooth equations
    Chen, XJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 80 (01) : 105 - 126
  • [50] Inexact-Newton method for solving operator equations in infinite-dimensional spaces
    Liu J.
    Gao Y.
    Journal of Applied Mathematics and Computing, 2006, 22 (1-2) : 351 - 360