A GLOBALLY CONVERGENT METHOD FOR SIMULTANEOUSLY FINDING POLYNOMIAL ROOTS

被引:0
|
作者
PASQUINI, L [1 ]
TRIGIANTE, D [1 ]
机构
[1] UNIV BARI,DIPARTIMENTO MATEMAT,I-70121 BARI,ITALY
关键词
D O I
10.2307/2007798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:135 / 149
页数:15
相关论文
共 50 条
  • [41] A globally convergent incremental Newton method
    M. Gürbüzbalaban
    A. Ozdaglar
    P. Parrilo
    Mathematical Programming, 2015, 151 : 283 - 313
  • [42] A GLOBALLY CONVERGENT STABILIZED SQP METHOD
    Gill, Philip E.
    Robinson, Daniel P.
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 1983 - 2010
  • [43] A globally convergent incremental Newton method
    Guerbuzbalaban, M.
    Ozdaglar, A.
    Parrilo, P.
    MATHEMATICAL PROGRAMMING, 2015, 151 (01) : 283 - 313
  • [44] Globally convergent modification of the quickprop method
    Vrahatis, MN
    Magoulas, GD
    Plagianakos, VP
    NEURAL PROCESSING LETTERS, 2000, 12 (02) : 159 - 169
  • [45] A Globally Convergent Interval Method for Computing and Bounding Multiple Roots of a Once Continuously Differentiable Function
    Bin Mohd, Ismail
    Dasril, Yosza
    4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019), 2019, 2138
  • [46] A GLOBALLY CONVERGENT BALL NEWTON METHOD
    NICKEL, KL
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) : 988 - 1003
  • [47] ITERATION METHODS FOR FINDING ALL ZEROS OF A POLYNOMIAL SIMULTANEOUSLY
    ABERTH, O
    MATHEMATICS OF COMPUTATION, 1973, 27 (122) : 339 - 344
  • [48] Derivative free iterative simultaneous method for finding distinct roots of polynomial equation
    Mir, Nazir Ahmad
    Shams, Mudassir
    Rafiq, Naila
    Akram, S.
    Rizwan, M.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) : 1629 - 1636
  • [49] PL HOMOTOPY FOR FINDING ALL THE ROOTS OF A POLYNOMIAL
    KOJIMA, M
    NISHINO, H
    ARIMA, N
    MATHEMATICAL PROGRAMMING, 1979, 16 (01) : 37 - 62
  • [50] A Parallel algorithm for finding all the roots of a polynomial
    Jin, YM
    Zhang, SY
    COMPUTER SCIENCE AND TECHNOLOGY IN NEW CENTURY, 2001, : 479 - 482