A globally convergent incremental Newton method

被引:0
|
作者
M. Gürbüzbalaban
A. Ozdaglar
P. Parrilo
机构
[1] Massachusetts Institute of Technology,Laboratory for Information and Decision Systems
来源
Mathematical Programming | 2015年 / 151卷
关键词
Incremental methods; Convex optimization; Newton method; Gauss–Newton method; Strong convexity; EKF algorithm; 49M15: Newton-type methods; 90C30: nonlinear programming; 90C06: large-scale problems; 90C25: convex programming;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by machine learning problems over large data sets and distributed optimization over networks, we develop and analyze a new method called incremental Newton method for minimizing the sum of a large number of strongly convex functions. We show that our method is globally convergent for a variable stepsize rule. We further show that under a gradient growth condition, convergence rate is linear for both variable and constant stepsize rules. By means of an example, we show that without the gradient growth condition, incremental Newton method cannot achieve linear convergence. Our analysis can be extended to study other incremental methods: in particular, we obtain a linear convergence rate result for the incremental Gauss–Newton algorithm under a variable stepsize rule.
引用
收藏
页码:283 / 313
页数:30
相关论文
共 50 条
  • [1] A globally convergent incremental Newton method
    Guerbuzbalaban, M.
    Ozdaglar, A.
    Parrilo, P.
    [J]. MATHEMATICAL PROGRAMMING, 2015, 151 (01) : 283 - 313
  • [2] A GLOBALLY CONVERGENT BALL NEWTON METHOD
    NICKEL, KL
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) : 988 - 1003
  • [3] A GLOBALLY CONVERGENT LP-NEWTON METHOD
    Fischer, Andreas
    Herrich, Markus
    Izmailov, Alexey F.
    Solodov, Mikhail V.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (04) : 2012 - 2033
  • [4] Globally Convergent Inexact Smoothing Newton Method for SOCCP
    Zhang, Jie
    Rui, Shao-Ping
    [J]. NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 427 - 434
  • [5] Globally convergent newton method for convex SC minimization problems
    Pang, J.S.
    Qi, L.
    [J]. Journal of Optimization Theory and Applications, 1995, 85 (03)
  • [6] GLOBALLY CONVERGENT INEXACT NEWTON METHODS
    EISENSTAT, SC
    WALKER, HF
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) : 393 - 422
  • [7] A globally convergent inexact Newton method with a new choice for the forcing term
    Márcia A. Gomes-Ruggiero
    Véra Lucia Rocha Lopes
    Julia Victoria Toledo-Benavides
    [J]. Annals of Operations Research, 2008, 157 : 193 - 205
  • [8] A NOTE ON GLOBALLY CONVERGENT NEWTON METHOD FOR STRONGLY MONOTONE VARIATIONAL INEQUALITIES
    Taji, Kouichi
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 2008, 51 (04) : 310 - 316
  • [9] A globally convergent inexact Newton method with a new choice for the forcing term
    Gomes-Ruggiero, Marcia A.
    Lopes, Vera Lucia Rocha
    Toledo-Benavides, Julia Victoria
    [J]. ANNALS OF OPERATIONS RESEARCH, 2008, 157 (01) : 193 - 205
  • [10] GLOBALLY CONVERGENT NEWTON METHODS FOR NONSMOOTH EQUATIONS
    HAN, SP
    PANG, JS
    RANGARAJ, N
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1992, 17 (03) : 586 - 607