A GLOBALLY CONVERGENT METHOD FOR SIMULTANEOUSLY FINDING POLYNOMIAL ROOTS

被引:0
|
作者
PASQUINI, L [1 ]
TRIGIANTE, D [1 ]
机构
[1] UNIV BARI,DIPARTIMENTO MATEMAT,I-70121 BARI,ITALY
关键词
D O I
10.2307/2007798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:135 / 149
页数:15
相关论文
共 50 条
  • [31] A general method to generate parallel iterations for finding all zeros of polynomial simultaneously
    HAN Danfu and WANG XinghuaDepartment of Mathematics
    Chinese Science Bulletin, 1997, (22) : 1849 - 1852
  • [32] Analytical method of finding polynomial roots by using the eigenvectors, eigenvalues apparatus
    Ivanov, Alexander
    Aliyev, Humbet
    Bakiyev, Bakhyt
    2015 TWELVE INTERNATIONAL CONFERENCE ON ELECTRONICS COMPUTER AND COMPUTATION (ICECCO), 2015, : 94 - 96
  • [33] Finding Cactus Roots in Polynomial Time
    Golovach, Petr A.
    Kratsch, Dieter
    Paulusma, Daniel
    Stewart, Anthony
    COMBINATORIAL ALGORITHMS, 2016, 9843 : 361 - 372
  • [34] FINDING THE ROOTS OF A POLYNOMIAL ON AN MIMD MULTICOMPUTER
    COSNARD, M
    FRAIGNIAUD, P
    PARALLEL COMPUTING, 1990, 15 (1-3) : 75 - 85
  • [35] Finding Cactus Roots in Polynomial Time
    Golovach, Petr A.
    Kratsch, Dieter
    Paulusma, Daniel
    Stewart, Anthony
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (06) : 1409 - 1426
  • [36] Finding Cactus Roots in Polynomial Time
    Petr A. Golovach
    Dieter Kratsch
    Daniël Paulusma
    Anthony Stewart
    Theory of Computing Systems, 2018, 62 : 1409 - 1426
  • [39] Globally Convergent Modification of the Quickprop Method
    Michael N. Vrahatis
    George D. Magoulas
    Vassilis P. Plagianakos
    Neural Processing Letters, 2000, 12 : 159 - 170
  • [40] A globally convergent ball Stirling method
    Sen, R
    Guhathakurta, P
    APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) : 329 - 340