Finding Cactus Roots in Polynomial Time

被引:4
|
作者
Golovach, Petr A. [1 ]
Kratsch, Dieter [2 ]
Paulusma, Daniel [3 ]
Stewart, Anthony [3 ]
机构
[1] Univ Bergen, Dept Informat, PB 7803, N-5020 Bergen, Norway
[2] Univ Lorraine, Lab Informat Theor & Appl, F-57045 Metz 01, France
[3] Univ Durham, Dept Comp Sci, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
Square root; Cactus; Treewidth; Clique number; SQUARE ROOTS; SPLIT GRAPHS;
D O I
10.1007/s00224-017-9825-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A graph H is a square root of a graph G, or equivalently, G is the square of H, if G can be obtained from H by adding an edge between any two vertices in H that are of distance 2. The Square Root problem is that of deciding whether a given graph admits a square root. The problem of testing whether a graph admits a square root which belongs to some specified graph class is called the -Square Root problem. By showing boundedness of treewidth we prove that Square Root is polynomial-time solvable on some classes of graphs with small clique number and that -Square Root is polynomial-time solvable when is the class of cactuses.
引用
收藏
页码:1409 / 1426
页数:18
相关论文
共 50 条
  • [1] Finding Cactus Roots in Polynomial Time
    Petr A. Golovach
    Dieter Kratsch
    Daniël Paulusma
    Anthony Stewart
    Theory of Computing Systems, 2018, 62 : 1409 - 1426
  • [2] Finding Cactus Roots in Polynomial Time
    Golovach, Petr A.
    Kratsch, Dieter
    Paulusma, Daniel
    Stewart, Anthony
    COMBINATORIAL ALGORITHMS, 2016, 9843 : 361 - 372
  • [3] A METHOD FOR FINDING ROOTS OF A POLYNOMIAL
    SOUKUP, J
    NUMERISCHE MATHEMATIK, 1969, 13 (04) : 349 - &
  • [4] FINDING THE ROOTS OF A POLYNOMIAL ON AN MIMD MULTICOMPUTER
    COSNARD, M
    FRAIGNIAUD, P
    PARALLEL COMPUTING, 1990, 15 (1-3) : 75 - 85
  • [5] PL HOMOTOPY FOR FINDING ALL THE ROOTS OF A POLYNOMIAL
    KOJIMA, M
    NISHINO, H
    ARIMA, N
    MATHEMATICAL PROGRAMMING, 1979, 16 (01) : 37 - 62
  • [6] A Parallel algorithm for finding all the roots of a polynomial
    Jin, YM
    Zhang, SY
    COMPUTER SCIENCE AND TECHNOLOGY IN NEW CENTURY, 2001, : 479 - 482
  • [7] A parallel iteration method for finding roots of a polynomial
    Zhang, Xin
    Peng, Hong
    Zheng, Qilun
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2408 - 2412
  • [8] A Parallel Algorithm for Finding Roots of a Complex Polynomial
    程锦松
    Journal of Computer Science and Technology, 1990, (01) : 71 - 81
  • [9] FINDING ROOTS BY DEFLATED POLYNOMIAL-APPROXIMATION
    LUCAS, TN
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1990, 327 (05): : 819 - 830
  • [10] Finding roots of a multivariate polynomial in a linear subspace
    Huang, Ming-Deh A.
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 288 - 296