Testing numbers of the form N = 2kp(m) - 1 for primality

被引:1
|
作者
Sadovnik, E. V.
机构
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2006年 / 16卷 / 02期
关键词
D O I
10.1163/156939206777344610
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We suggest an algorithm to test numbers of the form N = 2kp(m) - 1 for primality, where 2k < p(m), k is an odd positive integer, 2k < p(m), p is a prime number, and p = 3 (mod 4). The algorithm makes use of the Lucas functions. First we present an algorithm to test numbers of the form N = 2k3(m) - 1. Then the same technique is used in the more general case where N = 2kp(m) - 1. The algorithms suggested here are of complexity O((log N)(2) log log N log log log N).
引用
收藏
页码:99 / 108
页数:10
相关论文
共 50 条
  • [1] Primality Testing for Numbers of the Form h · 2n ± 1
    Dandan Huang
    Yunling Kang
    Journal of Systems Science and Complexity, 2019, 32 : 1473 - 1478
  • [2] Primality Testing for Numbers of the Form h·2n± 1
    HUANG Dandan
    KANG Yunling
    JournalofSystemsScience&Complexity, 2019, 32 (05) : 1473 - 1478
  • [3] Primality Testing for Numbers of the Form h • 2n ± 1
    Huang Dandan
    Kang Yunling
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2019, 32 (05) : 1473 - 1478
  • [4] Testing numbers of the form N = 2k P(1)m(1) P-2(m2) ... p(n)m(n) - 1 for primality
    Sadovnik, E. V.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2008, 18 (03): : 239 - 249
  • [5] Primality tests for numbers of the form k•2m±1
    Sun, Zhi-Hong
    FIBONACCI QUARTERLY, 2006, 44 (02): : 121 - 130
  • [6] Primality test for numbers of the form (2p)2n+1
    Deng, Yingpu
    Huang, Dandan
    ACTA ARITHMETICA, 2015, 169 (04) : 301 - 317
  • [7] Fast Algorithms on Primality Testing for Numbers 255 • 2n ± 1
    Huang, Dandan
    Zhang, Zheng
    Tang, Zhihao
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 1255 - 1258
  • [8] Primality test for numbers of the form Ap(n)
    Deng, Yingpu
    Lv, Chang
    JOURNAL OF DISCRETE ALGORITHMS, 2015, 33 : 81 - 92
  • [9] Quintic reciprocity and primality test for numbers of the form M=A5n ± ωn
    Berrizbeitia, P
    Vera, MO
    Ayuso, JT
    LATIN 2000: THEORETICAL INFORMATICS, 2000, 1776 : 269 - 279
  • [10] Refined computations for points of the form 2kP based on Montgomery trick
    Adachi, D
    Hirata, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (01): : 334 - 339