Testing numbers of the form N = 2kp(m) - 1 for primality

被引:1
|
作者
Sadovnik, E. V.
机构
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2006年 / 16卷 / 02期
关键词
D O I
10.1163/156939206777344610
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We suggest an algorithm to test numbers of the form N = 2kp(m) - 1 for primality, where 2k < p(m), k is an odd positive integer, 2k < p(m), p is a prime number, and p = 3 (mod 4). The algorithm makes use of the Lucas functions. First we present an algorithm to test numbers of the form N = 2k3(m) - 1. Then the same technique is used in the more general case where N = 2kp(m) - 1. The algorithms suggested here are of complexity O((log N)(2) log log N log log log N).
引用
收藏
页码:99 / 108
页数:10
相关论文
共 50 条