Testing numbers of the form N = 2kp(m) - 1 for primality

被引:1
|
作者
Sadovnik, E. V.
机构
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2006年 / 16卷 / 02期
关键词
D O I
10.1163/156939206777344610
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We suggest an algorithm to test numbers of the form N = 2kp(m) - 1 for primality, where 2k < p(m), k is an odd positive integer, 2k < p(m), p is a prime number, and p = 3 (mod 4). The algorithm makes use of the Lucas functions. First we present an algorithm to test numbers of the form N = 2k3(m) - 1. Then the same technique is used in the more general case where N = 2kp(m) - 1. The algorithms suggested here are of complexity O((log N)(2) log log N log log log N).
引用
收藏
页码:99 / 108
页数:10
相关论文
共 50 条
  • [21] A Deterministic Factorization and Primality Testing Algorithm for Integers of the Form Z Mod 6=-1
    Noureldien, Noureldien A.
    Awadelkariem, Mahmud
    Ahmed, Deia M.
    2012 THIRD INTERNATIONAL CONFERENCE ON EDUCATION AND SPORTS EDUCATION (ESE 2012), VOL 1, 2012, 4 : 7 - 12
  • [22] LUCASIAN CRITERIA FOR PRIMALITY OF N=H.2N-1
    RIESEL, H
    MATHEMATICS OF COMPUTATION, 1969, 23 (108) : 869 - &
  • [23] A NOTE ON PRIMALITY TESTS FOR N=H.2N-1
    RODSETH, OJ
    BIT, 1994, 34 (03): : 451 - 454
  • [24] DETERMINATION OF PRIMALITY OF N BY USING FACTORS OF N-2 +/- 1
    WILLIAMS, HC
    JUDD, JS
    MATHEMATICS OF COMPUTATION, 1976, 30 (133) : 157 - 172
  • [25] A NOTE ON THE PRIMALITY OF 6(2N) + 1 AND 10(2N) + 1
    WILLIAMS, HC
    FIBONACCI QUARTERLY, 1988, 26 (04): : 296 - 305
  • [26] NEW PRIMALITY CRITERIA AND FACTORIZATIONS OF 2M+/-1
    BRILLHART, J
    LEHMER, DH
    SELFRIDGE, JL
    MATHEMATICS OF COMPUTATION, 1975, 29 (130) : 620 - 647
  • [27] EFFECTIVE PRIMALITY TESTS FOR INTEGERS OF THE FORMS N=K3(N)+1 AND N=K2(M)3(N)+1
    GUTHMANN, A
    BIT NUMERICAL MATHEMATICS, 1992, 32 (03) : 529 - 534
  • [28] On the primality of 2h•3n+1
    Kirfel, C
    Rodseth, OJ
    DISCRETE MATHEMATICS, 2001, 241 (1-3) : 395 - 406
  • [29] Explicit primality criteria for h . 2n ± 1
    Deng, Yingpu
    Huang, Dandan
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2016, 28 (01): : 55 - 74
  • [30] PRIME NUMBERS OF FORM N2N PLUS 1 RESPECTIVELY P2P PLUS 1
    HEPPNER, E
    MONATSHEFTE FUR MATHEMATIK, 1978, 85 (02): : 99 - 103