Quintic reciprocity and primality test for numbers of the form M=A5n ± ωn

被引:1
|
作者
Berrizbeitia, P [1 ]
Vera, MO
Ayuso, JT
机构
[1] Univ Simon Bolivar, Dept Matemat, Caracas 1080A, Venezuela
[2] Univ Valladolid, Fac Ciencias, Valladolid, Spain
来源
LATIN 2000: THEORETICAL INFORMATICS | 2000年 / 1776卷
关键词
D O I
10.1007/10719839_28
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Quintic Reciprocity Law is used to produce an algorithm, that runs in polynomial time, and that determines the primality of numbers M such that M-4 - 1 is divisible by a power of 5 which is larger that rootM, provided that a small prime p, p = 1(mod5) is given, such that nl is not a fifth power module p. The same test equations are used for all such M. If M is a fifth power module p, a sufficient condition that determines the primality of M is given.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 50 条
  • [1] Primality test for numbers of the form Ap(n)
    Deng, Yingpu
    Lv, Chang
    JOURNAL OF DISCRETE ALGORITHMS, 2015, 33 : 81 - 92
  • [2] Deterministic primality test for numbers of the form A2.3n+1, n ≥ 3 odd
    Berrizbeitia, P
    Iskra, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) : 363 - 365
  • [3] Testing numbers of the form N = 2kp(m) - 1 for primality
    Sadovnik, E. V.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2006, 16 (02): : 99 - 108
  • [4] Primality test for numbers of the form (2p)2n+1
    Deng, Yingpu
    Huang, Dandan
    ACTA ARITHMETICA, 2015, 169 (04) : 301 - 317
  • [5] Primality Testing for Numbers of the Form h · 2n ± 1
    Dandan Huang
    Yunling Kang
    Journal of Systems Science and Complexity, 2019, 32 : 1473 - 1478
  • [6] Primality Testing for Numbers of the Form h·2n± 1
    HUANG Dandan
    KANG Yunling
    JournalofSystemsScience&Complexity, 2019, 32 (05) : 1473 - 1478
  • [7] Primality Testing for Numbers of the Form h • 2n ± 1
    Huang Dandan
    Kang Yunling
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2019, 32 (05) : 1473 - 1478
  • [8] Testing numbers of the form N = 2k P(1)m(1) P-2(m2) ... p(n)m(n) - 1 for primality
    Sadovnik, E. V.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2008, 18 (03): : 239 - 249
  • [9] Primality test for numbers M with a large power of 5 dividing M4-1
    Berrizbeitia, P
    Odremán, M
    Ayuso, JT
    THEORETICAL COMPUTER SCIENCE, 2003, 297 (1-3) : 25 - 36
  • [10] Primality tests for numbers of the form k•2m±1
    Sun, Zhi-Hong
    FIBONACCI QUARTERLY, 2006, 44 (02): : 121 - 130