Quintic reciprocity and primality test for numbers of the form M=A5n ± ωn

被引:1
|
作者
Berrizbeitia, P [1 ]
Vera, MO
Ayuso, JT
机构
[1] Univ Simon Bolivar, Dept Matemat, Caracas 1080A, Venezuela
[2] Univ Valladolid, Fac Ciencias, Valladolid, Spain
来源
LATIN 2000: THEORETICAL INFORMATICS | 2000年 / 1776卷
关键词
D O I
10.1007/10719839_28
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Quintic Reciprocity Law is used to produce an algorithm, that runs in polynomial time, and that determines the primality of numbers M such that M-4 - 1 is divisible by a power of 5 which is larger that rootM, provided that a small prime p, p = 1(mod5) is given, such that nl is not a fifth power module p. The same test equations are used for all such M. If M is a fifth power module p, a sufficient condition that determines the primality of M is given.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 50 条