AN ASYMPTOTIC BOUND ON THE COVERING RADII OF BINARY BCH CODES

被引:13
|
作者
TIETAVAINEN, AA
机构
[1] Department of Mathematics, University of Turku, SF-20500, Turku
关键词
Codes; Symbolic;
D O I
10.1109/18.50395
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deligne's theorem is used to prove that the covering radius of a primitive binary BCH code with designed distance 2t+l is equal to 2t — 1 if t is of the form 2” + 1 and the code length is at least (2t)/sup 4t-2/. It is believed that this is the first time Deligne's theorem is used on coding theory. © 1990 IEEE
引用
收藏
页码:211 / 213
页数:3
相关论文
共 50 条
  • [31] Binary primitive LCD BCH codes
    Xinmei Huang
    Qin Yue
    Yansheng Wu
    Xiaoping Shi
    Jerod Michel
    Designs, Codes and Cryptography, 2020, 88 : 2453 - 2473
  • [32] Optimized algorithms for binary BCH codes
    Yin, Min
    Xie, Menwang
    Yi, Bo
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 1552 - 1555
  • [33] Binary primitive LCD BCH codes
    Huang, Xinmei
    Yue, Qin
    Wu, Yansheng
    Shi, Xiaoping
    Michel, Jerod
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (12) : 2453 - 2473
  • [34] The covering radius of some primitive ternary BCH codes
    Franken, R
    Cohen, SD
    FINITE FIELDS AND APPLICATIONS, 2004, 2948 : 166 - 180
  • [35] The Length of Primitive BCH Codes with Minimal Covering Radius
    Cohen S.D.
    Designs, Codes and Cryptography, 1997, 10 (1) : 5 - 16
  • [36] DO MOST BINARY LINEAR CODES ACHIEVE THE GOBLICK BOUND ON THE COVERING RADIUS
    DELSARTE, P
    PIRET, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (06) : 826 - 828
  • [37] Asymptotic improvement of the Gilbert-Varshamov bound on the size of binary codes
    Jiang, T
    Vardy, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1655 - 1664
  • [38] Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes
    Gaborit, Philippe
    Zemor, Gilles
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 287 - +
  • [39] Asymmetric binary covering codes
    Cooper, JN
    Ellis, RB
    Kahng, AB
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 100 (02) : 232 - 249
  • [40] COVERING RADIUS OF BINARY CODES
    HELLESETH, T
    KLOVE, T
    MYKKELTVEIT, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (05) : 627 - 628