Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes

被引:7
|
作者
Gaborit, Philippe [1 ]
Zemor, Gilles [2 ]
机构
[1] Univ Limoges, XLIM, UMR 6172, 123 Av Albert Thomas, F-87000 Limoges, France
[2] Univ Bordeaux, Inst Math, UMR 5251, F-33405 Talence, France
关键词
double circulant codes; Gilbert-Varshamov bound; linear codes; random coding;
D O I
10.1109/ISIT.2006.261851
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The Gilbert-Varshamov bound states that the maximum size A(2)(n, d) of a binary code of length n and minimum distance d satisfies A(2)(n, d) >= 2(n)/V(n, d - 1) where V(n, d) = Sigma(d)(i=0) ((n)(i)) stands for the volume of a Hamming hall of radius d. Recently Jiang and Vardy showed that for binary non-linear codes this bound could be improved to A(2)(n, d) >= cn 2(n)/V(n, d - 1) for c a constant and d/n <= 0.499. In this paper we show that certain asymptotic families of linear binary [n, n/2] double circulant codes satisfy the same improved Gilbert-Varshamov bound.
引用
收藏
页码:287 / +
页数:2
相关论文
共 50 条
  • [1] Asymptotic improvement of the Gilbert-Varshamov bound for linear codes
    Gaborit, Philippe
    Zemor, Gilles
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) : 3865 - 3872
  • [2] Asymptotic improvement of the Gilbert-Varshamov bound on the size of binary codes
    Jiang, T
    Vardy, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1655 - 1664
  • [3] An Improvement on the Gilbert-Varshamov Bound for Permutation Codes
    Gao, Fei
    Yang, Yiting
    Ge, Gennian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (05) : 3059 - 3063
  • [4] Linear codes with complementary duals meet the Gilbert-Varshamov bound
    Sendrier, N
    DISCRETE MATHEMATICS, 2004, 285 (1-3) : 345 - 347
  • [5] Linear codes with complementary duals meet the Gilbert-Varshamov bound
    Sendrier, N
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 456 - 456
  • [6] Non-linear Cyclic Codes that Attain the Gilbert-Varshamov Bound
    Haviv, Ishay
    Langberg, Michael
    Schwartz, Moshe
    Yaakobi, Eitan
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 586 - 588
  • [7] Algebraic Geometry Codes With Complementary Duals Exceed the Asymptotic Gilbert-Varshamov Bound
    Jin, Lingfei
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (09) : 6277 - 6282
  • [8] The Gilbert-Varshamov Bound for Stabilizer Codes Over Zm
    Tang, Nianqi
    Li, Zhuo
    Xing, Lijuan
    Zhang, Ming
    IEEE ACCESS, 2018, 6 : 45699 - 45706
  • [9] Asymptotic Gilbert-Varshamov Bound on Frequency Hopping Sequences
    Niu, Xianhua
    Xing, Chaoping
    Yuan, Chen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (02) : 1213 - 1218
  • [10] Goppa geometric codes achieving the Gilbert-Varshamov bound
    Xing, CP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) : 259 - 264