Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes

被引:7
|
作者
Gaborit, Philippe [1 ]
Zemor, Gilles [2 ]
机构
[1] Univ Limoges, XLIM, UMR 6172, 123 Av Albert Thomas, F-87000 Limoges, France
[2] Univ Bordeaux, Inst Math, UMR 5251, F-33405 Talence, France
关键词
double circulant codes; Gilbert-Varshamov bound; linear codes; random coding;
D O I
10.1109/ISIT.2006.261851
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The Gilbert-Varshamov bound states that the maximum size A(2)(n, d) of a binary code of length n and minimum distance d satisfies A(2)(n, d) >= 2(n)/V(n, d - 1) where V(n, d) = Sigma(d)(i=0) ((n)(i)) stands for the volume of a Hamming hall of radius d. Recently Jiang and Vardy showed that for binary non-linear codes this bound could be improved to A(2)(n, d) >= cn 2(n)/V(n, d - 1) for c a constant and d/n <= 0.499. In this paper we show that certain asymptotic families of linear binary [n, n/2] double circulant codes satisfy the same improved Gilbert-Varshamov bound.
引用
收藏
页码:287 / +
页数:2
相关论文
共 50 条