Given positive integers n and d, let A(2) (n, d) denote the maximum size of a binary code of length n and minimum distance d. The well-known Gilbert-Varshamov bound asserts that A(2) (n, d) greater than or equal to 2(n)/V (n, d - 1), where V (n, d) = Sigma(i=0)(d) (7) is the volume of a Hamming sphere of radius d. We show that, in fact, there exists a positive constant c such that A(2) (n, d) greater than or equal to c 2(n) / V(n, d-1) log(2) V(n, d-1) whenever d/n less than or equal to, 0.499. The result follows by recasting the Gilbert-Varshamov bound into a graph-theoretic framework and using the fact that the corresponding graph is locally sparse. Generalizations and extensions of this result are briefly discussed.
机构:
Univ Limoges, XLIM, UMR 6172, 123 Av Albert Thomas, F-87000 Limoges, FranceUniv Limoges, XLIM, UMR 6172, 123 Av Albert Thomas, F-87000 Limoges, France
Gaborit, Philippe
Zemor, Gilles
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, Inst Math, UMR 5251, F-33405 Talence, FranceUniv Limoges, XLIM, UMR 6172, 123 Av Albert Thomas, F-87000 Limoges, France
Zemor, Gilles
2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS,
2006,
: 287
-
+