Asymptotic improvement of the Gilbert-Varshamov bound on the size of binary codes

被引:48
|
作者
Jiang, T [1 ]
Vardy, A
机构
[1] Miami Univ, Dept Math & Stat, Oxford, OH 45056 USA
[2] Univ Calif San Diego, Dept Elect & Comp Engn, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Ajtai-Komlos-Szemeredi bound; asymptotic constructions; binary codes; constant-weight codes; Gilbert-Varshamov bound; locally sparse graphs; nonlinear codes;
D O I
10.1109/TIT.2004.831751
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given positive integers n and d, let A(2) (n, d) denote the maximum size of a binary code of length n and minimum distance d. The well-known Gilbert-Varshamov bound asserts that A(2) (n, d) greater than or equal to 2(n)/V (n, d - 1), where V (n, d) = Sigma(i=0)(d) (7) is the volume of a Hamming sphere of radius d. We show that, in fact, there exists a positive constant c such that A(2) (n, d) greater than or equal to c 2(n) / V(n, d-1) log(2) V(n, d-1) whenever d/n less than or equal to, 0.499. The result follows by recasting the Gilbert-Varshamov bound into a graph-theoretic framework and using the fact that the corresponding graph is locally sparse. Generalizations and extensions of this result are briefly discussed.
引用
收藏
页码:1655 / 1664
页数:10
相关论文
共 50 条
  • [1] Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes
    Gaborit, Philippe
    Zemor, Gilles
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 287 - +
  • [2] Asymptotic improvement of the Gilbert-Varshamov bound for linear codes
    Gaborit, Philippe
    Zemor, Gilles
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) : 3865 - 3872
  • [3] An Improvement on the Gilbert-Varshamov Bound for Permutation Codes
    Gao, Fei
    Yang, Yiting
    Ge, Gennian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (05) : 3059 - 3063
  • [4] Algebraic Geometry Codes With Complementary Duals Exceed the Asymptotic Gilbert-Varshamov Bound
    Jin, Lingfei
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (09) : 6277 - 6282
  • [5] The Gilbert-Varshamov Bound for Stabilizer Codes Over Zm
    Tang, Nianqi
    Li, Zhuo
    Xing, Lijuan
    Zhang, Ming
    IEEE ACCESS, 2018, 6 : 45699 - 45706
  • [6] Asymptotic Gilbert-Varshamov Bound on Frequency Hopping Sequences
    Niu, Xianhua
    Xing, Chaoping
    Yuan, Chen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (02) : 1213 - 1218
  • [7] Goppa geometric codes achieving the Gilbert-Varshamov bound
    Xing, CP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) : 259 - 264
  • [8] MDS Poset-Codes Satisfying the Asymptotic Gilbert-Varshamov Bound in Hamming Weights
    Hyun, Jong Yoon
    Lee, Yoonjin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (12) : 8021 - 8026
  • [9] An Improvement of the Gilbert-Varshamov Bound Over Nonprime Fields
    Bassa, Alp
    Beelen, Peter
    Garcia, Arnaldo
    Stichtenoth, Henning
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (07) : 3859 - 3861
  • [10] Subquadratic Time Encodable Codes Beating the Gilbert-Varshamov Bound
    Narayanan, Anand Kumar
    Weidnet, Matthew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (10) : 6010 - 6021