Asymptotic improvement of the Gilbert-Varshamov bound on the size of binary codes

被引:48
|
作者
Jiang, T [1 ]
Vardy, A
机构
[1] Miami Univ, Dept Math & Stat, Oxford, OH 45056 USA
[2] Univ Calif San Diego, Dept Elect & Comp Engn, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Ajtai-Komlos-Szemeredi bound; asymptotic constructions; binary codes; constant-weight codes; Gilbert-Varshamov bound; locally sparse graphs; nonlinear codes;
D O I
10.1109/TIT.2004.831751
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given positive integers n and d, let A(2) (n, d) denote the maximum size of a binary code of length n and minimum distance d. The well-known Gilbert-Varshamov bound asserts that A(2) (n, d) greater than or equal to 2(n)/V (n, d - 1), where V (n, d) = Sigma(i=0)(d) (7) is the volume of a Hamming sphere of radius d. We show that, in fact, there exists a positive constant c such that A(2) (n, d) greater than or equal to c 2(n) / V(n, d-1) log(2) V(n, d-1) whenever d/n less than or equal to, 0.499. The result follows by recasting the Gilbert-Varshamov bound into a graph-theoretic framework and using the fact that the corresponding graph is locally sparse. Generalizations and extensions of this result are briefly discussed.
引用
收藏
页码:1655 / 1664
页数:10
相关论文
共 50 条
  • [21] Non-linear Cyclic Codes that Attain the Gilbert-Varshamov Bound
    Haviv, Ishay
    Langberg, Michael
    Schwartz, Moshe
    Yaakobi, Eitan
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 586 - 588
  • [22] Concatenated Quantum Codes Can Attain the Quantum Gilbert-Varshamov Bound
    Ouyang, Yingkai
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (06) : 3117 - 3122
  • [23] Locally Testable and Locally Correctable Codes Approaching the Gilbert-Varshamov Bound
    Gopi, Sivakanth
    Kopparty, Swastik
    Oliveira, Rafael
    Ron-Zewi, Noga
    Saraf, Shubhangi
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 2073 - 2091
  • [25] A new subclass of alternant codes can meet the Gilbert-Varshamov bound
    Fan, Ji-Hao
    Chen, Han-Wu
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2015, 43 (11): : 2243 - 2246
  • [26] Self-dual codes better than the Gilbert-Varshamov bound
    Bassa, Alp
    Stichtenoth, Henning
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (01) : 173 - 182
  • [27] Nonbinary Quantum Goppa Codes Exceeding the Quantum Gilbert-Varshamov Bound
    Annika Niehage
    Quantum Information Processing, 2007, 6 : 143 - 158
  • [28] Locally Testable and Locally Correctable Codes approaching the Gilbert-Varshamov Bound
    Gopi, Sivakanth
    Kopparty, Swastik
    Oliveira, Rafael
    Ron-Zewi, Noga
    Saraf, Shubhangi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (08) : 5813 - 5831
  • [29] Unique Decoding of Explicit ε-balanced Codes Near the Gilbert-Varshamov Bound
    Jeronimo, Fernando Granha
    Quintana, Dylan
    Srivastava, Shashank
    Tulsiani, Madhur
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 434 - 445
  • [30] The Error Exponent of Random Gilbert-Varshamov Codes
    Somekh-Baruch, Anelia
    Scarlett, Jonathan
    Guillen i Fabregas, Albert
    2018 52ND ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2018,