DEVICE MODELING BY RADIAL BASIS FUNCTIONS

被引:20
|
作者
MEES, AI
JACKSON, MF
CHUA, LO
机构
[1] UNIV ADELAIDE,DEPT MATH,ADELAIDE,SA 5000,AUSTRALIA
[2] UNIV CALIF BERKELEY,ELECTR RES LAB,BERKELEY,CA 94720
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1992年 / 39卷 / 01期
关键词
D O I
10.1109/81.109239
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electronic devices are often modeled either by piecewise-linear functions or by empirically derived combinations of nonlinear elementary functions. We present an alternative modeling technique that works directly from data and provides a straightforward and relatively automatic method of interpolating smoothly from measurements. Since the results are nonexplicit (that is, the models are algorithmic rather than analytic), our approach is likely to be most appropriate in situations where it is difficult to derive an explicit functional form analogous to the Ebers-Moll equation for bipolar transistors. A good example is in the modeling of submicron devices in VLSI circuits, where the relevant device physics are currently poorly understood.
引用
收藏
页码:19 / 27
页数:9
相关论文
共 50 条
  • [41] On Spherical Averages of Radial Basis Functions
    B. J. C. Baxter
    Foundations of Computational Mathematics, 2008, 8 : 395 - 407
  • [42] Radial basis functions for engine modelling
    Morton, TM
    Knott, S
    STATISTICS AND ANALYTICAL METHODS IN AUTOMOTIVE ENGINEERING, 2002, 2002 (04): : 43 - 51
  • [43] Acoustic Eigenanalysis with Radial Basis Functions
    Majkut, L.
    Olszewski, R.
    ACTA PHYSICA POLONICA A, 2014, 125 (4A) : A77 - A83
  • [44] Time varying radial basis functions
    Jamshidi, A. A.
    Gear, C. W.
    Kevrekidis, I. G.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 266 : 61 - 72
  • [45] On spherical averages of radial basis functions
    Baxter, B. J. C.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (03) : 395 - 407
  • [46] CONVERGENCE PROPERTIES OF RADIAL BASIS FUNCTIONS
    JACKSON, IRH
    CONSTRUCTIVE APPROXIMATION, 1988, 4 (03) : 243 - 264
  • [47] INTERPOLATION BY PERIODIC RADIAL BASIS FUNCTIONS
    LIGHT, WA
    CHENEY, EW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (01) : 111 - 130
  • [48] Radial basis functions under tension
    Bouhamidi, A
    Le Méhauté, A
    JOURNAL OF APPROXIMATION THEORY, 2004, 127 (02) : 135 - 154
  • [49] MEAN DIMENSION OF RADIAL BASIS FUNCTIONS
    Hoyt, Christopher
    Owen, Art B.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (03) : 1191 - 1211
  • [50] Hermite Radial Basis Functions Implicits
    Macedo, I.
    Gois, J. P.
    Velho, L.
    COMPUTER GRAPHICS FORUM, 2011, 30 (01) : 27 - 42