DEVICE MODELING BY RADIAL BASIS FUNCTIONS

被引:20
|
作者
MEES, AI
JACKSON, MF
CHUA, LO
机构
[1] UNIV ADELAIDE,DEPT MATH,ADELAIDE,SA 5000,AUSTRALIA
[2] UNIV CALIF BERKELEY,ELECTR RES LAB,BERKELEY,CA 94720
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1992年 / 39卷 / 01期
关键词
D O I
10.1109/81.109239
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electronic devices are often modeled either by piecewise-linear functions or by empirically derived combinations of nonlinear elementary functions. We present an alternative modeling technique that works directly from data and provides a straightforward and relatively automatic method of interpolating smoothly from measurements. Since the results are nonexplicit (that is, the models are algorithmic rather than analytic), our approach is likely to be most appropriate in situations where it is difficult to derive an explicit functional form analogous to the Ebers-Moll equation for bipolar transistors. A good example is in the modeling of submicron devices in VLSI circuits, where the relevant device physics are currently poorly understood.
引用
收藏
页码:19 / 27
页数:9
相关论文
共 50 条
  • [31] Trefftz radial basis functions (TRBF)
    Kompis, V.
    Stiavnicky, M.
    Zmindak, M.
    Murcinkova, Z.
    PROCEEDINGS OF LSAME.08: LEUVEN SYMPOSIUM ON APPLIED MECHANICS IN ENGINEERING, PTS 1 AND 2, 2008, : 25 - 35
  • [32] Radial Basis Functions for Phase Unwrapping
    Villa Hernandez, Jesus
    de la Rosa Vargas, Ismael
    de la Rosa Miranda, Enrique
    COMPUTACION Y SISTEMAS, 2010, 14 (02): : 145 - 150
  • [33] Rapid evaluation of radial basis functions
    Roussos, G
    Baxter, BJC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 180 (01) : 51 - 70
  • [34] Gradient Descent and Radial Basis Functions
    Fernandez-Redondo, Mercedes
    Torres-Sospedra, Joaquin
    Hernandez-Espinosa, Carlos
    INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 391 - 396
  • [35] Smoothing and interpolation with radial basis functions
    Myers, DE
    BOUNDARY ELEMENT TECHNOLOGY XIII: INCORPORATING COMPUTATIONAL METHODS AND TESTING FOR ENGINEERING INTEGRITY, 1999, 2 : 365 - 374
  • [36] Almost interpolation and radial basis functions
    Le Méhauté, A
    MODERN DEVELOPMENTS IN MULTIVARIATE APPROXIMATION, 2003, 145 : 203 - 214
  • [37] Image decomposition by radial basis functions
    Andersen, JD
    IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 : 749 - 754
  • [38] Solving PDEs with radial basis functions
    Fornberg, Bengt
    Flyer, Natasha
    ACTA NUMERICA, 2015, 24 : 215 - 258
  • [39] On unsymmetric collocation by radial basis functions
    Hon, YC
    Schaback, R
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 119 (2-3) : 177 - 186
  • [40] Experiments on ensembles of radial basis functions
    Hernández-Espinosa, C
    Fernández-Redondo, M
    Torres-Sospedra, J
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004, 2004, 3070 : 197 - 202