Acoustic Eigenanalysis with Radial Basis Functions

被引:0
|
作者
Majkut, L. [1 ]
Olszewski, R. [1 ]
机构
[1] AGH Univ Sci & Technol, Dept Mech & Vibroacoust, PL-30059 Krakow, Poland
关键词
POINT INTERPOLATION METHOD; NUMERICAL-SOLUTION; MESHLESS METHOD; SCHEME;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper concerns the eigenanalysis of acoustic cavities with the use of radial basis functions (RBF). The Kansa collocation method was used for determination of the natural frequencies and eigenvectors of 1D, 2D and 3D acoustic fields. Due to validation analysis of the proposed method, in simple examples like 1D, 2D rectangle and 3D rectangular parallelepiped all calculated eigenferquency and eigenvectors were compared with exact (analytical) results. All results indicate that using of multiquadric radial basis functions provide a results with very high accuracy in comparison to analytical results. In the paper a new method for determining the shape parameter of the multiquadric radial basis functions is described.
引用
收藏
页码:A77 / A83
页数:7
相关论文
共 50 条
  • [1] Compactly supported radial basis functions for the acoustic 3D eigenanalysis using the particular integral method
    Leblanc, Alexandre
    Malesys, Alain
    Lavie, Antoine
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (04) : 520 - 526
  • [2] Boundary collocation method for acoustic eigenanalysis of three-dimensional cavities using radial basis function
    J. T. Chen
    M. H. Chang
    K. H. Chen
    I. L. Chen
    [J]. Computational Mechanics, 2002, 29 : 392 - 408
  • [3] Boundary collocation method for acoustic eigenanalysis of three-dimensional cavities using radial basis function
    Chen, JT
    Chang, MH
    Chen, KH
    Chen, IL
    [J]. COMPUTATIONAL MECHANICS, 2002, 29 (4-5) : 392 - 408
  • [4] Acoustic estimation of seafloor parameters: A radial basis functions approach
    Caiti, A
    Jesus, SM
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 100 (03): : 1473 - 1481
  • [5] The boundary collocation method with meshless concept for acoustic eigenanalysis of two-dimensional cavities using radial basis function
    Chen, JT
    Chang, MH
    Chen, KH
    Lin, SR
    [J]. JOURNAL OF SOUND AND VIBRATION, 2002, 257 (04) : 667 - 711
  • [6] Radial Basis Functions
    Giesl, Peter
    [J]. CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 61 - 98
  • [7] Scaling of radial basis functions
    Larsson, Elisabeth
    Schaback, Robert
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 1130 - 1152
  • [8] Comparison of Radial Basis Functions
    Rozhenko, A., I
    [J]. NUMERICAL ANALYSIS AND APPLICATIONS, 2018, 11 (03) : 220 - 235
  • [9] Robustness of radial basis functions
    Eickhoff, R
    Rückert, U
    [J]. COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 264 - 271
  • [10] Deformable radial basis functions
    Huebner, Wolfgang
    Mallot, Hanspeter A.
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 1, PROCEEDINGS, 2007, 4668 : 411 - +