Comparison of Radial Basis Functions

被引:2
|
作者
Rozhenko, A., I [1 ]
机构
[1] Russian Acad Sci, Inst Computat Math & Math Geophys, Siberian Branch, Pr Akad Laurenteva 6, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
spline; algorithm; radial basis function; reproducing kernel; trend; external drift; interpolation; smoothing; regression; tension spline; regularized spline;
D O I
10.1134/S1995423918030047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A survey of algorithms for approximation of multivariate functions with radial basis function (RBF) splines is presented. Algorithms of interpolating, smoothing, selecting the smoothing parameter, and regression with splines are described in detail. These algorithms are based on the feature of conditional positive definiteness of the spline radial basis function. Several families of radial basis functions generated by means of conditionally completely monotone functions are considered. Recommendations for the selection of the spline basis and preparation of initial data for approximation with the help of the RBF spline are given.
引用
收藏
页码:220 / 235
页数:16
相关论文
共 50 条
  • [1] Comparison of radial basis functions in evaluating the Asian option
    Zhai, F.
    Shen, K.
    Kita, E.
    [J]. BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXIX, 2007, 44 : 133 - +
  • [2] A COMPARISON OF RADIAL BASIS FUNCTIONS IN APPLICATIONS TO IMAGE MORPHING
    Jin, Boram
    Lee, Yonghae
    [J]. JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (04): : 321 - 332
  • [3] Comparison of Different Radial Basis Functions in Dynamical Systems
    Argaez
    Giesl, Peter
    Hafstein, Sigurdur
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON SIMULATION AND MODELING METHODOLOGIES, TECHNOLOGIES AND APPLICATIONS (SIMULTECH), 2021, : 394 - 405
  • [4] An empirical comparison of training algorithms for radial basis functions
    Ortiz-Gómez, M
    Hernández-Espinosa, C
    Fernández-Redondo, M
    [J]. ARTIFICIAL NEURAL NETS PROBLEM SOLVING METHODS, PT II, 2003, 2687 : 129 - 136
  • [5] Radial Basis Functions
    Giesl, Peter
    [J]. CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 61 - 98
  • [6] Scaling of radial basis functions
    Larsson, Elisabeth
    Schaback, Robert
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 1130 - 1152
  • [7] Robustness of radial basis functions
    Eickhoff, R
    Rückert, U
    [J]. COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 264 - 271
  • [8] Deformable radial basis functions
    Huebner, Wolfgang
    Mallot, Hanspeter A.
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 1, PROCEEDINGS, 2007, 4668 : 411 - +
  • [9] Applying radial basis functions
    Mulgrew, B
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (02) : 50 - 65
  • [10] Robustness of radial basis functions
    Eickhoff, Ralf
    Rueckert, Ulrich
    [J]. NEUROCOMPUTING, 2007, 70 (16-18) : 2758 - 2767