Robustness of radial basis functions

被引:22
|
作者
Eickhoff, Ralf [1 ]
Rueckert, Ulrich [1 ]
机构
[1] Univ Paderborn, Heinz Nixfordf Inst Syst & Circuit Technol, D-33102 Paderborn, Germany
关键词
radial basis function; robustness; equicontinuity; sensitivity analysis; nanoelectronics;
D O I
10.1016/j.neucom.2006.04.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural networks are intended to be used in future nanoelectronic technology since these architectures seem to be robust to malfunctioning elements and noise in its inputs and parameters. In this work, the robustness of radial basis function networks is analyzed in order to operate in noisy and unreliable environment. Furthermore, upper bounds on the mean square error under noise contaminated parameters and inputs are determined if the network parameters are constrained. To achieve robuster neural network architectures fundamental methods are introduced to identify sensitive parameters and neurons. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2758 / 2767
页数:10
相关论文
共 50 条
  • [1] Robustness of radial basis functions
    Eickhoff, R
    Rückert, U
    [J]. COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 264 - 271
  • [2] Robustness of Contraction Metrics Computed by Radial Basis Functions
    Giesl, Peter
    Hafstein, Sigurdur
    Mehrabinezhad, Iman
    [J]. PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (ICINCO), 2021, : 592 - 599
  • [3] Radial Basis Functions
    Giesl, Peter
    [J]. CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 61 - 98
  • [4] Scaling of radial basis functions
    Larsson, Elisabeth
    Schaback, Robert
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 1130 - 1152
  • [5] Comparison of Radial Basis Functions
    Rozhenko, A., I
    [J]. NUMERICAL ANALYSIS AND APPLICATIONS, 2018, 11 (03) : 220 - 235
  • [6] Deformable radial basis functions
    Huebner, Wolfgang
    Mallot, Hanspeter A.
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 1, PROCEEDINGS, 2007, 4668 : 411 - +
  • [7] Applying radial basis functions
    Mulgrew, B
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (02) : 50 - 65
  • [8] Radial basis functions for the sphere
    Baxter, BJC
    Hubbert, S
    [J]. RECENT PROGRESS IN MULTIVARIATE APPROXIMATION, 2001, 137 : 33 - 47
  • [9] A unified theory of radial basis functions Native Hilbert spaces for radial basis functions II
    Schaback, R
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 121 (1-2) : 165 - 177
  • [10] On robustness of radial basis function network with input perturbation
    Dey, Prasenjit
    Gopal, Madhumita
    Pradhan, Payal
    Pal, Tandra
    [J]. NEURAL COMPUTING & APPLICATIONS, 2019, 31 (02): : 523 - 537