Scaling properties of the Kuramoto-Sivashinsky equation

被引:4
|
作者
Li, J
Sander, LM
机构
关键词
D O I
10.1142/S0218348X95000436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Kuramoto-Sivishinsky model describes the dynamics of a cellular flame front. It has been known for some time that on scales large compared with the size of a cell the front appears to be a self-affine fractal which has noisy dynamics in 1+1 dimensions. We use the inverse method of Lam and Sander (Phys. Rev. Lett. 71, 561 (1993)) to show explicitly how the scaling occurs and how deterministic chaos at small scales develops into noisy dynamics at large scales, and how a small scale pattern becomes a large scale disordered fractal via an intermediate scaling regime.
引用
收藏
页码:507 / 514
页数:8
相关论文
共 50 条
  • [41] Small scale properties of the stochastic stabilized Kuramoto-Sivashinsky equation
    Buceta, J
    Pastor, JM
    Rubio, MA
    de la Rubia, FJ
    PHYSICA D, 1998, 113 (2-4): : 166 - 171
  • [42] Viscous shocks in the destabilized Kuramoto-Sivashinsky equation
    Rademacher, Jens D. M.
    Wittenberg, Ralf W.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2006, 1 (04): : 336 - 347
  • [43] Stability of cellular states of the Kuramoto-Sivashinsky equation
    Elgin, JN
    Wu, XS
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (06) : 1621 - 1638
  • [44] TRAVELING WAVE SOLUTIONS OF THE KURAMOTO-SIVASHINSKY EQUATION
    HOOPER, AP
    GRIMSHAW, R
    WAVE MOTION, 1988, 10 (05) : 405 - 420
  • [45] Travelling wave solutions to the Kuramoto-Sivashinsky equation
    Nickel, J.
    CHAOS SOLITONS & FRACTALS, 2007, 33 (04) : 1376 - 1382
  • [46] Scale and space localization in the Kuramoto-Sivashinsky equation
    Wittenberg, RW
    Holmes, P
    CHAOS, 1999, 9 (02) : 452 - 465
  • [47] Invariant measures for a stochastic Kuramoto-Sivashinsky equation
    Ferrario, Benedetta
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (02) : 379 - 407
  • [48] Nonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation
    Gotoda, Hiroshi
    Pradas, Marc
    Kalliadasis, Serafim
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (05):
  • [49] Dynamical bifurcation of the damped Kuramoto-Sivashinsky equation
    Choi, Yuncherl
    Han, Jongmin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) : 383 - 398
  • [50] On a nonlocal stochastic Kuramoto-Sivashinsky equation with jumps
    Bo, Lijun
    Shi, Kehua
    Wang, Yongjin
    STOCHASTICS AND DYNAMICS, 2007, 7 (04) : 439 - 457