Nonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation

被引:17
|
作者
Gotoda, Hiroshi [2 ]
Pradas, Marc [1 ]
Kalliadasis, Serafim [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Ritsumeikan Univ, Dept Mech Engn, Kusatsu, Shiga 5258577, Japan
来源
基金
欧洲研究理事会;
关键词
Spatiotemporal chaos; nonlinear forecasting; pattern formation; SOLITARY PULSES; SPATIOTEMPORAL CHAOS; DISSIPATIVE MEDIA; FALLING FILM; TIME-SERIES; DYNAMICS; SYSTEMS; INSTABILITY; PREDICTION; WAVES;
D O I
10.1142/S0218127415300153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The emergence of pattern formation and chaotic dynamics is studied in the one-dimensional (1D) generalized Kuramoto-Sivashinsky (gKS) equation by means of a time-series analysis, in particular, a nonlinear forecasting method which is based on concepts from chaos theory and appropriate statistical methods. We analyze two types of temporal signals, a local one and a global one, finding in both cases that the dynamical state of the gKS solution undergoes a transition from high-dimensional chaos to periodic pulsed oscillations through low-dimensional deterministic chaos while increasing the control parameter of the system. Our results demonstrate that the proposed nonlinear forecasting methodology allows to elucidate the dynamics of the system in terms of its predictability properties.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Generalized solutions to the Kuramoto-Sivashinsky equation
    Biagioni, HA
    Iorio, RJ
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 6 (1-4) : 1 - 8
  • [2] Dynamical features of the generalized Kuramoto-Sivashinsky equation
    Kudryashov, N. A.
    Lavrova, S. F.
    CHAOS SOLITONS & FRACTALS, 2021, 142
  • [3] DYNAMIC TRANSITIONS OF GENERALIZED KURAMOTO-SIVASHINSKY EQUATION
    Ong, Kiah Wah
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (04): : 1225 - 1236
  • [4] Fractional generalized Kuramoto-Sivashinsky equation: Formulation and solution
    Akbar Nazari-Golshan
    The European Physical Journal Plus, 134
  • [5] Solitary and periodic solutions of the generalized Kuramoto-Sivashinsky equation
    N. A. Kudryashov
    Regular and Chaotic Dynamics, 2008, 13 : 234 - 238
  • [6] Coherent structures theory for the generalized Kuramoto-Sivashinsky equation
    Tseluiko, D.
    Saprykin, S.
    Kalliadasis, S.
    THIRD INTERNATIONAL SYMPOSIUM ON BIFURCATIONS AND INSTABILITIES IN FLUID DYNAMICS, 2010, 216
  • [7] Solitary and periodic solutions of the generalized Kuramoto-Sivashinsky equation
    Kudryashov, N. A.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (03): : 234 - 238
  • [8] Hybrid solitary waves for the generalized Kuramoto-Sivashinsky equation
    C. T. Djeumen Tchaho
    H. M. Omanda
    D. Belobo Belobo
    The European Physical Journal Plus, 133
  • [9] Hybrid solitary waves for the generalized Kuramoto-Sivashinsky equation
    Tchaho, C. T. Djeumen
    Omanda, H. M.
    Belobo, D. Belobo
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (09):
  • [10] Fractional generalized Kuramoto-Sivashinsky equation: Formulation and solution
    Nazari-Golshan, Akbar
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (11):