Nonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation

被引:17
|
作者
Gotoda, Hiroshi [2 ]
Pradas, Marc [1 ]
Kalliadasis, Serafim [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[2] Ritsumeikan Univ, Dept Mech Engn, Kusatsu, Shiga 5258577, Japan
来源
基金
欧洲研究理事会;
关键词
Spatiotemporal chaos; nonlinear forecasting; pattern formation; SOLITARY PULSES; SPATIOTEMPORAL CHAOS; DISSIPATIVE MEDIA; FALLING FILM; TIME-SERIES; DYNAMICS; SYSTEMS; INSTABILITY; PREDICTION; WAVES;
D O I
10.1142/S0218127415300153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The emergence of pattern formation and chaotic dynamics is studied in the one-dimensional (1D) generalized Kuramoto-Sivashinsky (gKS) equation by means of a time-series analysis, in particular, a nonlinear forecasting method which is based on concepts from chaos theory and appropriate statistical methods. We analyze two types of temporal signals, a local one and a global one, finding in both cases that the dynamical state of the gKS solution undergoes a transition from high-dimensional chaos to periodic pulsed oscillations through low-dimensional deterministic chaos while increasing the control parameter of the system. Our results demonstrate that the proposed nonlinear forecasting methodology allows to elucidate the dynamics of the system in terms of its predictability properties.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A note on the Kuramoto-Sivashinsky equation with discontinuity
    D'Ambrosio, Lorenzo
    Gallo, Marco
    Pugliese, Alessandro
    MATHEMATICS IN ENGINEERING, 2021, 3 (05):
  • [42] Computational study of the Kuramoto-Sivashinsky equation
    Smyrlis, YS
    Papageorgiou, DT
    ADVANCES IN MULTI-FLUID FLOWS, 1996, : 426 - 432
  • [43] Scaling properties of the Kuramoto-Sivashinsky equation
    Li, J
    Sander, LM
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03): : 507 - 514
  • [44] Feedback control of the Kuramoto-Sivashinsky equation
    Armaou, A
    Christofides, PD
    PHYSICA D, 2000, 137 (1-2): : 49 - 61
  • [45] Dynamical bifurcation for the Kuramoto-Sivashinsky equation
    Zhang, Yindi
    Song, Lingyu
    Axia, Wang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1155 - 1163
  • [46] Optimal bounds on the Kuramoto-Sivashinsky equation
    Otto, Felix
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (07) : 2188 - 2245
  • [47] A PARTICLE MODEL FOR THE KURAMOTO-SIVASHINSKY EQUATION
    ROST, M
    KRUG, J
    PHYSICA D-NONLINEAR PHENOMENA, 1995, 88 (01) : 1 - 13
  • [48] An exact solution to the Kuramoto-Sivashinsky equation
    Abdel-Hamid, B
    PHYSICS LETTERS A, 1999, 263 (4-6) : 338 - 340
  • [49] On a nonlocal analog of the Kuramoto-Sivashinsky equation
    Granero-Belinchon, Rafael
    Hunter, John K.
    NONLINEARITY, 2015, 28 (04) : 1103 - 1133
  • [50] ANISOTROPY EFFECT ON KURAMOTO-SIVASHINSKY EQUATION
    SHIRAISHI, K
    SAITO, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (01) : 9 - 13