Scaling properties of the Kuramoto-Sivashinsky equation

被引:4
|
作者
Li, J
Sander, LM
机构
关键词
D O I
10.1142/S0218348X95000436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Kuramoto-Sivishinsky model describes the dynamics of a cellular flame front. It has been known for some time that on scales large compared with the size of a cell the front appears to be a self-affine fractal which has noisy dynamics in 1+1 dimensions. We use the inverse method of Lam and Sander (Phys. Rev. Lett. 71, 561 (1993)) to show explicitly how the scaling occurs and how deterministic chaos at small scales develops into noisy dynamics at large scales, and how a small scale pattern becomes a large scale disordered fractal via an intermediate scaling regime.
引用
收藏
页码:507 / 514
页数:8
相关论文
共 50 条
  • [31] INERTIAL MANIFOLDS FOR THE KURAMOTO-SIVASHINSKY EQUATION
    ROBINSON, JC
    PHYSICS LETTERS A, 1994, 184 (02) : 190 - 193
  • [32] Dynamics of a nonlocal Kuramoto-Sivashinsky equation
    Duan, JQ
    Ervin, VJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 143 (02) : 243 - 266
  • [33] Adaptive stabilization of the Kuramoto-Sivashinsky equation
    Kobayashi, T
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2002, 33 (03) : 175 - 180
  • [34] ON THE BIFURCATION PHENOMENA OF THE KURAMOTO-SIVASHINSKY EQUATION
    Feudel, Fred
    Feudel, Ulrike
    Brandenburg, Axel
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (05): : 1299 - 1303
  • [35] An exact solution to the Kuramoto-Sivashinsky equation
    Abdel-Hamid, Bishri
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263 (4-6): : 338 - 340
  • [36] On the Solutions for the Conserved Kuramoto-Sivashinsky Equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    MILAN JOURNAL OF MATHEMATICS, 2025,
  • [37] UNIVERSAL PROPERTIES OF THE 2-DIMENSIONAL KURAMOTO-SIVASHINSKY EQUATION
    JAYAPRAKASH, C
    HAYOT, F
    PANDIT, R
    PHYSICAL REVIEW LETTERS, 1993, 71 (01) : 12 - 15
  • [38] THE DYNAMIC PROPERTIES OF A GENERALIZED KAWAHARA EQUATION WITH KURAMOTO-SIVASHINSKY PERTURBATION
    Chen, Shuting
    Du, Zengji
    Liu, Jiang
    Wang, Ke
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (03): : 1471 - 1496
  • [39] Small scale properties of the stochastic stabilized Kuramoto-Sivashinsky equation
    Buceta, J.
    Pastor, J.M.
    Rubio, M.A.
    de la Rubia, F.J.
    Physica D: Nonlinear Phenomena, 1998, 113 (2-4): : 166 - 171
  • [40] From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation
    Kawamura, Yoji
    PHYSICAL REVIEW E, 2014, 89 (01)