THE MAXIMUM GENUS OF GRAPHS OF DIAMETER 2

被引:24
|
作者
SKOVIERA, M
机构
[1] Department of Computer Science, Comenius University
关键词
D O I
10.1016/0012-365X(91)90046-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a (finite) graph of diameter two. We prove that if G is loopless then it is upper embeddable, i.e. the maximum genus gamma-m(G) equals [beta(G)/2], where beta(G) = \E(G)\ - \V(G)\ + 1 is the Betti number of G. For graphs with loops we show that [beta(G)/2] - 2 less-than-or-equal-to gamma-M(G) less-than-or-equal-to [beta(G)/2] if G is vertex 2-connected, and compute the exact value of gamma-M(G) if the vertex-connectivity of G is 1. We note that by a result of Jungerman [2] and Xuong [10] 4-connected graphs are upper embeddable.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 50 条
  • [41] GRAPHS OF GIVEN GENUS AND ARBITRARILY LARGE MAXIMUM GENUS - PRELIMINARY REPORT
    RINGEISE.RD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A34 - &
  • [42] ON THE NUMBER OF MAXIMUM GENUS EMBEDDINGS OF ALMOST ALL GRAPHS
    STAHL, S
    EUROPEAN JOURNAL OF COMBINATORICS, 1992, 13 (02) : 119 - 126
  • [43] Approximating Maximum Integral Multiflows on Bounded Genus Graphs
    Chien-Chung Huang
    Mathieu Mari
    Claire Mathieu
    Jens Vygen
    Discrete & Computational Geometry, 2023, 70 : 1266 - 1291
  • [44] Approximating Maximum Integral Multiflows on Bounded Genus Graphs
    Huang, Chien-Chung
    Mari, Mathieu
    Mathieu, Claire
    Vygen, Jens
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (04) : 1266 - 1291
  • [45] MAXIMUM GENUS OF SOME GRAPHS WITH UPPER IMBEDDABLE SUBGRAPHS
    VENTRE, AGS
    MONATSHEFTE FUR MATHEMATIK, 1979, 86 (04): : 327 - 331
  • [46] A note on large graphs of diameter two and given maximum degree
    McKay, BD
    Miller, M
    Siran, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (01) : 110 - 118
  • [47] The maximum girth and minimum circumference of graphs with prescribed radius and diameter
    Qiao, Pu
    Zhan, Xingzhi
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2827 - 2830
  • [48] Maximum diameter of 3-and 4-colorable graphs
    Czabarka, Eva
    Smith, Stephen J.
    Szekely, Laszlo
    JOURNAL OF GRAPH THEORY, 2023, 102 (02) : 262 - 270
  • [49] The maximum independent sets of de Bruijn graphs of diameter 3
    Cartwright, Dustin A.
    Cueto, Maria Angelica
    Tobis, Enrique A.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [50] The maximum diameter of total domination edge-critical graphs
    Henning, Michael A.
    van der Merwe, Lucas C.
    DISCRETE MATHEMATICS, 2012, 312 (02) : 397 - 404