THE MAXIMUM GENUS OF GRAPHS OF DIAMETER 2

被引:24
|
作者
SKOVIERA, M
机构
[1] Department of Computer Science, Comenius University
关键词
D O I
10.1016/0012-365X(91)90046-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a (finite) graph of diameter two. We prove that if G is loopless then it is upper embeddable, i.e. the maximum genus gamma-m(G) equals [beta(G)/2], where beta(G) = \E(G)\ - \V(G)\ + 1 is the Betti number of G. For graphs with loops we show that [beta(G)/2] - 2 less-than-or-equal-to gamma-M(G) less-than-or-equal-to [beta(G)/2] if G is vertex 2-connected, and compute the exact value of gamma-M(G) if the vertex-connectivity of G is 1. We note that by a result of Jungerman [2] and Xuong [10] 4-connected graphs are upper embeddable.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 50 条
  • [31] Nonseparating Independent Sets and Maximum Genus of Graphs
    Chao Yang
    Han Ren
    Er-ling Wei
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 719 - 728
  • [32] The decycling number and maximum genus of cubic graphs
    Long, Shude
    Ren, Han
    JOURNAL OF GRAPH THEORY, 2018, 88 (03) : 375 - 384
  • [33] Oriented diameter of graphs with given girth and maximum degree
    Chen, Bin
    Chang, An
    DISCRETE MATHEMATICS, 2023, 346 (04)
  • [34] LARGE PLANAR GRAPHS WITH GIVEN DIAMETER AND MAXIMUM DEGREE
    FELLOWS, M
    HELL, P
    SEYFFARTH, K
    DISCRETE APPLIED MATHEMATICS, 1995, 61 (02) : 133 - 153
  • [35] ON THE MAXIMUM DIAMETER OF A CLASS OF DISTANCE-REGULAR GRAPHS
    DAMERELL, RM
    GEORGIACODIS, MA
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1981, 13 (JUL) : 316 - 322
  • [36] The maximum Mostar indices of unicyclic graphs with given diameter
    Liu, Guorong
    Deng, Kecai
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 439
  • [37] Maximum eccentric connectivity index for graphs with given diameter
    Hauweele, Pierre
    Hertz, Alain
    Melot, Hadrien
    Ries, Bernard
    Devillez, Gauvain
    DISCRETE APPLIED MATHEMATICS, 2019, 268 : 102 - 111
  • [38] Exponentially many maximum genus embeddings and genus embeddings for complete graphs
    Ren Han
    Bai Yun
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (11): : 2013 - 2019
  • [39] Exponentially many maximum genus embeddings and genus embeddings for complete graphs
    Han Ren
    Yun Bai
    Science in China Series A: Mathematics, 2008, 51 : 2013 - 2019
  • [40] Exponentially many maximum genus embeddings and genus embeddings for complete graphs
    REN Han & BAI Yun Department of Mathematics
    Science in China(Series A:Mathematics), 2008, (11) : 2013 - 2019