THE MAXIMUM GENUS OF GRAPHS OF DIAMETER 2

被引:24
|
作者
SKOVIERA, M
机构
[1] Department of Computer Science, Comenius University
关键词
D O I
10.1016/0012-365X(91)90046-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a (finite) graph of diameter two. We prove that if G is loopless then it is upper embeddable, i.e. the maximum genus gamma-m(G) equals [beta(G)/2], where beta(G) = \E(G)\ - \V(G)\ + 1 is the Betti number of G. For graphs with loops we show that [beta(G)/2] - 2 less-than-or-equal-to gamma-M(G) less-than-or-equal-to [beta(G)/2] if G is vertex 2-connected, and compute the exact value of gamma-M(G) if the vertex-connectivity of G is 1. We note that by a result of Jungerman [2] and Xuong [10] 4-connected graphs are upper embeddable.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 50 条
  • [21] Oriented diameter of graphs with given maximum degree
    Dankelmann, Peter
    Guo, Yubao
    Surmacs, Michel
    JOURNAL OF GRAPH THEORY, 2018, 88 (01) : 5 - 17
  • [22] A new bound on maximum genus of simple graphs
    Lv, Shengxiang
    Liu, Yanpei
    ARS COMBINATORIA, 2011, 98 : 7 - 14
  • [23] THE MAXIMUM GENUS OF VERTEX-TRANSITIVE GRAPHS
    SKOVIERA, M
    NEDELA, R
    DISCRETE MATHEMATICS, 1989, 78 (1-2) : 179 - 186
  • [24] Maximum and minimum toughness of graphs of small genus
    Goddard, W
    Plummer, MD
    Swart, HC
    DISCRETE MATHEMATICS, 1997, 167 : 329 - 339
  • [25] Nonseparating Independent Sets and Maximum Genus of Graphs
    Chao YANG
    Han REN
    Er-ling WEI
    Acta Mathematicae Applicatae Sinica, 2022, 38 (03) : 719 - 728
  • [26] On the lower bounds for the maximum genus for simple graphs
    Ouyang, Zhangdong
    Wang, Jing
    Huang, Yuanqiu
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (05) : 1235 - 1242
  • [27] Maximum genus, connectivity and minimal degree of graphs
    Huang, YQ
    Zhao, TL
    DISCRETE MATHEMATICS, 2005, 300 (1-3) : 110 - 119
  • [28] Nonseparating Independent Sets and Maximum Genus of Graphs
    YANG, Chao
    REN, Han
    WEI, Er-ling
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (03): : 719 - 728
  • [29] THE MAXIMUM INTERVAL NUMBER OF GRAPHS WITH GIVEN GENUS
    SCHEINERMAN, ER
    JOURNAL OF GRAPH THEORY, 1987, 11 (03) : 441 - 446
  • [30] Maximum and minimum toughness of graphs of small genus
    Goddard, Wayne
    Plummer, Michael D.
    Swart, Henda C.
    Discrete Mathematics, 1997, 167-168 : 329 - 339