REGULAR TRIANGULATIONS OF NONCOMPACT SURFACES

被引:0
|
作者
MOHAR, B [1 ]
机构
[1] EDVARD KARDELJ UNIV,DEPT MATH,YU-61111 LJUBLJANA,YUGOSLAVIA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A triangulation of a surface is delta-regular if each vertex is contained in exactly delta-edges. For each delta greater-than-or-equal-to 7, delta-regular triangulations of arbitrary non-compact surfaces of finite genus are constructed. It is also shown that for delta less-than-or-equal-to 6 there is a delta-regular triangulation of a non-compact surface SIGMA if and only if delta = 6 and SIGMA is homeomorphic to one of the following surfaces: the Euclidean plane, the two-way-infinite cylinder, or the open Mobius band.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 50 条
  • [21] Regular triangulations of dynamic sets of points
    Vigo, M
    Pla, N
    Cotrina, J
    COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (02) : 127 - 149
  • [22] CLASSIFICATION OF NONCOMPACT SURFACES WITH BOUNDARY
    Prishlyak, A. O.
    Mischenko, K. I.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2007, 13 (01): : 62 - 66
  • [23] Exceptional Balanced Triangulations on Surfaces
    Steven Klee
    Satoshi Murai
    Yusuke Suzuki
    Graphs and Combinatorics, 2019, 35 : 1361 - 1373
  • [24] Voronoi diagrams, triangulations and surfaces
    Boissonnat, JD
    Differential Geometry and Topology, Discrete and Computational Geometry, 2005, 197 : 340 - 368
  • [25] TRANSFORMING TRIANGULATIONS ON NONPLANAR SURFACES
    Cortes, C.
    Grima, C. I.
    Hurtado, F.
    Marquez, A.
    Santos, F.
    Valenzuela, J.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (03) : 821 - 840
  • [26] Dominating Sets in Triangulations on Surfaces
    Honjo, Tatsuya
    Kawarabayashi, Ken-ichi
    Nakamoto, Atsuhiro
    JOURNAL OF GRAPH THEORY, 2010, 63 (01) : 17 - 30
  • [27] MINIMAL ORDERED TRIANGULATIONS OF SURFACES
    MAGAJNA, Z
    MOHAR, B
    PISANSKI, T
    JOURNAL OF GRAPH THEORY, 1986, 10 (04) : 451 - 460
  • [28] Flippable Edges in Triangulations on Surfaces
    Ikegami, Daiki
    Nakamoto, Atsuhiro
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (04) : 1041 - 1059
  • [29] Irreducible Triangulations of Surfaces with Boundary
    Alexandre Boulch
    Éric Colin de Verdière
    Atsuhiro Nakamoto
    Graphs and Combinatorics, 2013, 29 : 1675 - 1688
  • [30] Spaces of Geodesic Triangulations of Surfaces
    Luo, Yanwen
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (03) : 709 - 727