REGULAR TRIANGULATIONS OF NONCOMPACT SURFACES

被引:0
|
作者
MOHAR, B [1 ]
机构
[1] EDVARD KARDELJ UNIV,DEPT MATH,YU-61111 LJUBLJANA,YUGOSLAVIA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A triangulation of a surface is delta-regular if each vertex is contained in exactly delta-edges. For each delta greater-than-or-equal-to 7, delta-regular triangulations of arbitrary non-compact surfaces of finite genus are constructed. It is also shown that for delta less-than-or-equal-to 6 there is a delta-regular triangulation of a non-compact surface SIGMA if and only if delta = 6 and SIGMA is homeomorphic to one of the following surfaces: the Euclidean plane, the two-way-infinite cylinder, or the open Mobius band.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 50 条
  • [41] NEARLY EQUILATERAL TRIANGULATIONS OF SURFACES
    BOILEAU, M
    OTAL, JP
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1990, 32 (01) : 209 - 233
  • [42] GENERALIZED CONSTRUCTION FOR NONCOMPACT MINIMAL REGULAR SPACES
    BERRIOZABAL, MP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A180 - A181
  • [43] Uniformly Regular Triangulations for Parameterizing Lyapunov Functions
    Giesl, Peter
    Hafstein, Sigurdur
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (ICINCO), 2021, : 549 - 557
  • [44] Size Analysis of Nearly Regular Delaunay Triangulations
    Ian L. Dryden
    Charles C. Taylor
    Mohammad Reza Faghihi
    Methodology And Computing In Applied Probability, 1999, 1 (1) : 97 - 117
  • [45] Delaunay and Regular Triangulations as Lexicographic Optimal Chains
    David Cohen-Steiner
    André Lieutier
    Julien Vuillamy
    Discrete & Computational Geometry, 2023, 70 : 1 - 50
  • [46] Delaunay and Regular Triangulations as Lexicographic Optimal Chains
    Cohen-Steiner, David
    Lieutier, Andre
    Vuillamy, Julien
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (01) : 1 - 50
  • [47] Splines over regular triangulations in numerical simulation
    Pelosi, Francesca
    Giannelli, Carlotta
    Manni, Carla
    Sampoli, Maria Lucia
    Speleers, Hendrik
    COMPUTER-AIDED DESIGN, 2017, 82 : 100 - 111
  • [48] Regular triangulations of non-convex polytopes
    Proskurnikov, AV
    Romanovskii, YR
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) : 817 - 818
  • [49] Incremental topological flipping works for regular triangulations
    Edelsbrunner, H.
    Shah, N.R.
    Algorithmica (New York), 1996, 15 (03):
  • [50] Incremental topological flipping works for regular triangulations
    Edelsbrunner, H
    Shah, NR
    ALGORITHMICA, 1996, 15 (03) : 223 - 241