Spaces of Geodesic Triangulations of Surfaces

被引:3
|
作者
Luo, Yanwen [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
Geodesic triangulations; Tutte's embedding;
D O I
10.1007/s00454-021-00359-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a short proof of the contractibility of the space of geodesic triangulations with fixed combinatorial type of a convex polygon in the Euclidean plane. Moreover, for any n > 0, we show that there exists a space of geodesic triangulations of a polygon with a triangulation, whose n-th homotopy group is not trivial.
引用
收藏
页码:709 / 727
页数:19
相关论文
共 50 条
  • [1] Spaces of Geodesic Triangulations of Surfaces
    Yanwen Luo
    Discrete & Computational Geometry, 2022, 68 : 709 - 727
  • [2] SPACES OF GEODESIC TRIANGULATIONS OF THE SPHERE
    AWARTANI, M
    HENDERSON, DW
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 304 (02) : 721 - 732
  • [3] The deformation spaces of geodesic triangulations of flat tori
    Luo, Yanwen
    Wu, Tianqi
    Zhu, Xiaoping
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (07):
  • [4] Triangulations and Volume Form on Moduli Spaces of Flat Surfaces
    Duc-Manh Nguyen
    Geometric and Functional Analysis, 2010, 20 : 192 - 228
  • [5] Totally geodesic surfaces of Riemannian symmetric spaces
    Mashimo, Katsuya
    Springer Proceedings in Mathematics and Statistics, 2014, 106 : 301 - 308
  • [6] TRIANGULATIONS AND VOLUME FORM ON MODULI SPACES OF FLAT SURFACES
    Nguyen, Duc-Manh
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) : 192 - 228
  • [7] Modeling on triangulations with geodesic curves
    Morera, Dimas Martinez
    Carvalho, Paulo Cezar
    Velho, Luiz
    VISUAL COMPUTER, 2008, 24 (12): : 1025 - 1037
  • [8] Modeling on triangulations with geodesic curves
    Dimas Martínez Morera
    Paulo Cezar Carvalho
    Luiz Velho
    The Visual Computer, 2008, 24 : 1025 - 1037
  • [9] TRIANGULATIONS AND MODULI SPACES OF RIEMANN SURFACES WITH GROUP-ACTIONS
    BUSER, P
    SEPPALA, M
    SILHOL, R
    MANUSCRIPTA MATHEMATICA, 1995, 88 (02) : 209 - 224
  • [10] Geodesic ideal triangulations exist virtually
    Luo, Feng
    Schleimer, Saul
    Tillmann, Stephan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) : 2625 - 2630