Spaces of Geodesic Triangulations of Surfaces

被引:3
|
作者
Luo, Yanwen [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
Geodesic triangulations; Tutte's embedding;
D O I
10.1007/s00454-021-00359-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a short proof of the contractibility of the space of geodesic triangulations with fixed combinatorial type of a convex polygon in the Euclidean plane. Moreover, for any n > 0, we show that there exists a space of geodesic triangulations of a polygon with a triangulation, whose n-th homotopy group is not trivial.
引用
收藏
页码:709 / 727
页数:19
相关论文
共 50 条
  • [21] HISTs of triangulations on surfaces
    Nakamoto, Atsuhiro
    Tsuchiya, Shoichi
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (01) : 1 - 14
  • [22] Optical triangulations of curved spaces
    Garcia, Dimitris Georgantzis
    Chaplain, Gregory J.
    Belin, Jakub
    Tyc, Tomas
    Englert, Christoph
    Courtial, Johannes
    OPTICA, 2020, 7 (02): : 142 - 147
  • [23] NULL GEODESIC SURFACES AND GOLDBERG-SACHS THEOREM IN COMPLEX RIEMANNIAN SPACES
    PLEBANSKI, JF
    HACYAN, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (12) : 2403 - 2407
  • [24] NON-FLAT TOTALLY GEODESIC SURFACES IN SYMMETRIC SPACES OF CLASSICAL TYPE
    Mashimo, Katsuya
    OSAKA JOURNAL OF MATHEMATICS, 2019, 56 (01) : 1 - 32
  • [25] Geodesic complexity for non-geodesic spaces
    Davis, Donald M.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):
  • [26] Geodesic complexity for non-geodesic spaces
    Donald M. Davis
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [27] Geodesic spaces tangent to metric spaces
    V. V. Bilet
    Ukrainian Mathematical Journal, 2013, 64 : 1448 - 1456
  • [28] Exceptional Balanced Triangulations on Surfaces
    Steven Klee
    Satoshi Murai
    Yusuke Suzuki
    Graphs and Combinatorics, 2019, 35 : 1361 - 1373
  • [29] Geodesic spaces tangent to metric spaces
    Bilet, V. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 64 (09) : 1448 - 1456
  • [30] Voronoi diagrams, triangulations and surfaces
    Boissonnat, JD
    Differential Geometry and Topology, Discrete and Computational Geometry, 2005, 197 : 340 - 368