MULTIFRACTAL SPECTRA AND HYPERBOLIC GEOMETRY

被引:1
|
作者
CESARATTO, E
GRYNBERG, S
HANSEN, R
PIACQUADIO, M
机构
[1] Departamento de Matemática, Facultad de Ciencias Exactas, Universidad de Buenos Aires, 1428 Capital Federal, Ciudad Universitaria
关键词
D O I
10.1016/0960-0779(95)80013-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In recent years Procaccia, Kohmoto, and others studied non-regular fractal sets appearing in physics -such as the strange attractors- using the multifractal spectral decomposition technique introduced by Procaccia. These studies allowed the discovery of the so-called universal functions - and constants. Thus, a number of apparently unconnected physical phenomena have associated fractal sets with the same spectral decomposition function. Tel proposed a qualitative, tentative classification of the universal functions known so far. We model these using hyperbolic geometry, by decomposing the limit sets of finitely generated groups of motions in the Poincare circle. In connection with the metrics of the spectral decomposition curves, we derive the same constants obtained in physics.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [1] THE GEOMETRY AND SPECTRA OF HYPERBOLIC MANIFOLDS
    HISLOP, PD
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1994, 104 (04): : 715 - 776
  • [2] Multifractal geometry
    Olsen, L
    [J]. FRACTAL GEOMETRY AND STOCHASTICS II, 2000, 46 : 3 - 37
  • [3] Multifractal analysis of hyperbolic flows
    Barreira, L
    Saussol, B
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) : 339 - 371
  • [4] Multifractal Analysis of Hyperbolic Flows
    L. Barreira
    B. Saussol
    [J]. Communications in Mathematical Physics, 2000, 214 : 339 - 371
  • [5] Multifractal spectra and multifractal rigidity for horseshoes
    Barreira L.
    [J]. Journal of Dynamical and Control Systems, 1997, 3 (1) : 33 - 49
  • [6] GEOMETRY OF MULTIFRACTAL SYSTEMS
    BLUNT, M
    [J]. PHYSICAL REVIEW A, 1989, 39 (05): : 2780 - 2782
  • [7] Multifractal spectra and multifractal zeta-functions
    V. Mijović
    L. Olsen
    [J]. Aequationes mathematicae, 2017, 91 : 21 - 82
  • [8] Multifractal spectra and multifractal zeta-functions
    Mijovic, V.
    Olsen, L.
    [J]. AEQUATIONES MATHEMATICAE, 2017, 91 (01) : 21 - 82
  • [9] On the completeness of multifractal spectra
    Schmeling, J
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 1595 - 1616
  • [10] Computing multifractal spectra
    Kagiso, D.
    Pollicott, M.
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2015, 30 (04): : 404 - 425