Multifractal Analysis of Hyperbolic Flows

被引:0
|
作者
L. Barreira
B. Saussol
机构
[1] Departamento de Matemática,
[2] Instituto Superior Técnico,undefined
[3] 1049-001 Lisboa,undefined
[4] Portugal.¶E-mail: barreira@math.ist.utl.pt; saussol@math.ist.utl.pt,undefined
来源
关键词
Entropy; Continuous Function; Finite Type; Topological Entropy; Multifractal Analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the multifractal analysis of hyperbolic flows and of suspension flows over subshifts of finite type. A non-trivial consequence of our results is that for every Hölder continuous function non-cohomologous to a constant, the set of points without Birkhoff average has full topological entropy.
引用
收藏
页码:339 / 371
页数:32
相关论文
共 50 条
  • [1] Multifractal analysis of hyperbolic flows
    Barreira, L
    Saussol, B
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) : 339 - 371
  • [2] On the Hausdorff measure of irregular multifractal sets in hyperbolic flows
    Meson, Alejandro M.
    Vericat, Fernando
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2007, 8 (01) : 125 - 136
  • [3] A multifractal analysis for cuspidal windings on hyperbolic surfaces
    Jaerisch, Johannes
    Kesseboehmer, Marc
    Munday, Sara
    [J]. STOCHASTICS AND DYNAMICS, 2021, 21 (03)
  • [4] Almost additive multifractal analysis for flows
    Barreira, Luis
    Holanda, Carllos
    [J]. NONLINEARITY, 2021, 34 (06) : 4283 - 4314
  • [5] Multifractal Analysis of Conformal Axiom A Flows
    Ya. B. Pesin
    V. Sadovskaya
    [J]. Communications in Mathematical Physics, 2001, 216 : 277 - 312
  • [6] Multifractal analysis of conformal axiom A flows
    Pesin, YB
    Sadovskaya, V
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (02) : 277 - 312
  • [7] Multifractal analysis of the yellow river flows
    Zang Bao-Jiang
    Shang Peng-Jian
    [J]. CHINESE PHYSICS, 2007, 16 (03): : 565 - 569
  • [8] Multifractal analysis of non-uniformly hyperbolic systems
    Johansson, Anders
    Jordan, Thomas M.
    Oberg, Anders
    Pollicott, Mark
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2010, 177 (01) : 125 - 144
  • [9] Multifractal analysis of homological growth rates for hyperbolic surfaces
    Jaerisch, Johannes
    Takahasi, Hiroki
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024,
  • [10] HYPERBOLIC WAVELET LEADERS FOR ANISOTROPIC MULTIFRACTAL TEXTURE ANALYSIS
    Roux, S. G.
    Abry, P.
    Vedel, B.
    Jaffard, S.
    Wendt, H.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3558 - 3562