Multifractal analysis of homological growth rates for hyperbolic surfaces

被引:0
|
作者
Jaerisch, Johannes [1 ]
Takahasi, Hiroki [2 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusaku, Nagoya 4648602, Japan
[2] Keio Univ, Keio Inst Pure & Appl Sci KiPAS, Dept Math, Yokohama 2238522, Japan
关键词
Fuchsian group; Bowen-Series map; thermodynamic formalism; multifractal analysis; CONFORMAL EXPANDING MAPS; WEAK GIBBS MEASURES; EQUILIBRIUM MEASURES; THERMODYNAMIC FORMALISM; LYAPUNOV SPECTRUM; POINTS; INTERVALS; SYSTEMS;
D O I
10.1017/etds.2024.62
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We perform a multifractal analysis of homological growth rates of oriented geodesics on hyperbolic surfaces. Our main result provides a formula for the Hausdorff dimension of level sets of prescribed growth rates in terms of a generalized Poincar & eacute; exponent of the Fuchsian group. We employ symbolic dynamics developed by Bowen and Series, ergodic theory and thermodynamic formalism to prove the analyticity of the dimension spectrum.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] A multifractal analysis for cuspidal windings on hyperbolic surfaces
    Jaerisch, Johannes
    Kesseboehmer, Marc
    Munday, Sara
    [J]. STOCHASTICS AND DYNAMICS, 2021, 21 (03)
  • [2] Multifractal analysis of hyperbolic flows
    Barreira, L
    Saussol, B
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) : 339 - 371
  • [3] Multifractal Analysis of Hyperbolic Flows
    L. Barreira
    B. Saussol
    [J]. Communications in Mathematical Physics, 2000, 214 : 339 - 371
  • [4] Multifractal analysis of growing surfaces
    Chaudhari, A
    Yan, CCS
    Lee, SL
    [J]. APPLIED SURFACE SCIENCE, 2004, 238 (1-4) : 513 - 517
  • [5] The rates of growth in a hyperbolic group
    Fujiwara, Koji
    Sela, Zlil
    [J]. INVENTIONES MATHEMATICAE, 2023, 233 (03) : 1427 - 1470
  • [6] The rates of growth in a hyperbolic group
    Koji Fujiwara
    Zlil Sela
    [J]. Inventiones mathematicae, 2023, 233 : 1427 - 1470
  • [7] A homological characterization of hyperbolic groups
    D. J. Allcock
    S. M. Gersten
    [J]. Inventiones mathematicae, 1999, 135 : 723 - 742
  • [8] A homological characterization of hyperbolic groups
    Allcock, DJ
    Gersten, SM
    [J]. INVENTIONES MATHEMATICAE, 1999, 135 (03) : 723 - 742
  • [9] Multifractal and Stochastic analysis of electropolished surfaces
    Haase, M
    Mora, A
    Lehle, B
    [J]. THINKING IN PATTERNS: FRACTALS AND RELATED PHENOMENA IN NATURE, 2004, : 69 - 78
  • [10] Multifractal analysis of textured silicon surfaces
    Jurecka, Stanislav
    Angermann, Heike
    Kobayashi, Hikaru
    Takahashi, Masao
    Pincik, Emil
    [J]. APPLIED SURFACE SCIENCE, 2014, 301 : 46 - 50