On optimal scale upper bound in wavelet-based estimation for hurst index of fractional Brownian motion

被引:0
|
作者
Kawasaki, Shuhji [1 ]
Morita, Hiroyoshi [2 ]
机构
[1] Hitotsubashi Univ, Grad Sch Econ, Kunitachi, Tokyo 1868630, Japan
[2] Univ Electrocommun, Grad Sch Informat Syst, Chofu, Tokyo 1828585, Japan
基金
日本学术振兴会;
关键词
D O I
10.1080/09720502.2005.10700402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an evaluation of limit variance sigma(2)(H,J) in the central limit theorem for wavelet-based estimator of the Hurst index of fractional Brownian motion (FBM). sigma(2)(H,J) is the variance of a certain linear sum (with respect to scale j) of random variables. As a result, contribution to variance of the linear form turns out to be mostly its diagonal part components, which can be considered as a form of frequency localization (FL) property of wavelet coefficients of FBM. This FL property, together with specifiability of small J behavior of sigma(2)(H,J), is applied to determine the optimal upper bound of scale j used in the estimation.
引用
收藏
页码:195 / 214
页数:20
相关论文
共 50 条
  • [1] WAVELET-BASED ESTIMATOR FOR THE HURST PARAMETERS OF FRACTIONAL BROWNIAN SHEET
    Wu, Liang
    Ding, Yiming
    [J]. ACTA MATHEMATICA SCIENTIA, 2017, 37 (01) : 205 - 222
  • [2] WAVELET-BASED ESTIMATOR FOR THE HURST PARAMETERS OF FRACTIONAL BROWNIAN SHEET
    吴量
    丁义明
    [J]. Acta Mathematica Scientia, 2017, (01) : 205 - 222
  • [3] Wavelet-based estimations in fractional Brownian motion
    D'Attellis, CE
    Hirchoren, GA
    [J]. LATIN AMERICAN APPLIED RESEARCH, 1999, 29 (3-4) : 221 - 225
  • [4] Wavelet-based simulation of fractional Brownian motion revisited
    Pipiras, V
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) : 49 - 60
  • [5] Hurst Index Estimation in Stochastic Differential Equations Driven by Fractional Brownian Motion
    Jan Gairing
    Peter Imkeller
    Radomyra Shevchenko
    Ciprian Tudor
    [J]. Journal of Theoretical Probability, 2020, 33 : 1691 - 1714
  • [6] Hurst Index Estimation in Stochastic Differential Equations Driven by Fractional Brownian Motion
    Gairing, Jan
    Imkeller, Peter
    Shevchenko, Radomyra
    Tudor, Ciprian
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (03) : 1691 - 1714
  • [7] Evaluation for convergence of wavelet-based estimators on fractional Brownian motion
    Kawasaki, S
    Morita, H
    [J]. 2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 470 - 470
  • [8] A short note on a class of statistics for estimation of the Hurst index of fractional Brownian motion
    Kubilius, K.
    Skorniakov, V.
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 121 : 78 - 82
  • [9] Identification of the Hurst Index of a Step Fractional Brownian Motion
    Albert Benassi
    Pierre Bertrand
    Serge Cohen
    Jacques Istas
    [J]. Statistical Inference for Stochastic Processes, 2000, 3 (1-2) : 101 - 111
  • [10] Bayesian estimation of the Hurst parameter of fractional Brownian motion
    Chen, Chen-Yueh
    Shafie, Khalil
    Lin, Yen-Kuang
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4760 - 4766