WAVELET-BASED ESTIMATOR FOR THE HURST PARAMETERS OF FRACTIONAL BROWNIAN SHEET

被引:0
|
作者
Wu, Liang [1 ,2 ]
Ding, Yiming [3 ,4 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Wuhan Inst Technol, Dept Math, Wuhan 430070, Peoples R China
[4] Chinese Acad Sci, Wuhan Inst Phys & Math, Key Lab Magnet Resonance Biol Syst, Wuhan 430071, Peoples R China
关键词
detection of long-range dependence; self-similarity; Hurst parameters; wavelet analysis; fractional Brownian sheet; TEXTURE ANALYSIS; RANDOM-FIELDS; MOTION; COEFFICIENTS; MODELS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proposed a class of statistical estimators (H) over cap = ((H) over cap (1), . . . ,(H-d) over cap) for the Hurst parameters H = (H-1, . . . , H-d) of fractional Brownian field via multi-dimensional wavelet analysis and least squares, which are asymptotically normal. These estimators can be used to detect self -similarity and long-range dependence in multi-dimensional signals, which is important in texture classification and improvement of diffusion tensor imaging (DTI) of nuclear magnetic resonance (NMR). Some fractional Brownian sheets will be simulated and the simulated data are used to validate these estimators. We find that when H-i >= 1/2, the estimators. are accurate, and when H-i < 1/2, there are some bias.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 50 条